168 research outputs found

    On the origin of photon mass, momentum, and energy in a dielectric medium [Invited]

    Get PDF
    The debate and controversy concerning the momentum of light in a dielectric medium (Abraham vs Minkowski) is well-known and still not fully resolved. In this paper, we investigate the origin of both momenta in the frame of special relativity by considering photons in media as relativistic quasiparticles. We demonstrate for the first time to the best of our knowledge that the Minkowski form of the photon mass, momentum, and energy follows directly from the relativistic energy conservation law. We introduce a new expression for the momentum of light in a dispersive medium, consistent with the experimentally observed propagation of photons at the group velocity. Finally, the effect of light-induced optical stretching is discussed, which can be used for experimental verification of the existing expressions for the photon momentum

    Massive surface-plasmon polaritons

    Get PDF
    It is well-known that a quantum of light (photon) has a zero mass in vacuum. Entering into a medium the photon creates a quasiparticle (polariton, plasmon, surface-phonon, surface-plasmon polariton, etc.) whose rest mass is generally not zero. In this letter, devoted to the memory of Mark Stockman, we evaluate the rest mass of light-induced surface-plasmon polaritons (SPPs) and discuss an idea that collisions of two massive SPP quasiparticles can result in changes of their frequencies according to the energy and momentum conservation laws

    Direct amplitude-phase near-field observation of higher-order anapole states

    Full text link
    Anapole states associated with the resonant suppression of electric-dipole scattering exhibit minimized extinction and maximized storage of electromagnetic energy inside a particle. Using numerical simulations, optical extinction spectroscopy and amplitude-phase near-field mapping of silicon dielectric disks, we demonstrate high-order anapole states in the near-infrared wavelength range (900-1700 nm). We develop the procedure for unambiguously identifying anapole states by monitoring the normal component of the electric near-field and experimentally detect the first two anapole states as verified by far-field extinction spectroscopy and confirmed with the numerical simulations. We demonstrate that higher order anapole states possess stronger energy concentration and narrower resonances, a remarkable feature that is advantageous for their applications in metasurfaces and nanophotonics components, such as non-linear higher-harmonic generators and nanoscale lasers

    High-efficiency silicon metasurface mirror on a sapphire substrate

    Get PDF
    For a possible implementation of high-efficiency Si-nanosphere metasurface mirrors functioning at telecom wavelengths in future gravitational wave detectors, exact dimensional and configuration parameters of the total system, including substrate and protective coating, have to be determined a priori. The reflectivity of such multi-layer metasurfaces with embedded Si nanoparticles and their potential limitations need to be investigated. Here we present the results on how the substrate and protective layer influence optical properties and demonstrate how dimensional and material characteristics of the structure alter light reflectivity. Additionally, we consider the impact of manufacturing imperfections, such as fluctuations of Si nanoparticle sizes and their exact placement, on the metasurface reflectivity. Finally, we demonstrate how high reflectivity of the system can be preserved under variations of the protective layer thickness, incident angle of light, and its polarization

    Low-frequency magnetic response of gold nanoparticles

    Get PDF
    Gold nanoparticles (AuNPs) exposed to low frequency magnetic fields have shown promise in enhancing biological processes, such as cellular reprogramming. Despite the experimental evidence, a comprehensive understanding of the underlying physical principles and the corresponding theory remains elusive. The most common hypothesis is that functionalized nanoparticles transiently amplify magnetic fields, leading to improved cellular reprogramming efficiency. However, a detailed investigation on this topic is lacking. This paper bridges this knowledge gap by conducting a comprehensive investigation on the magnetic response of surface-modified AuNPs exposed to magnetic fields with frequencies up to hundreds of MHz. Starting with the inherent properties of bulk gold material, we explore a wide range of magnetic susceptibilities that might result from the redistribution of charge carriers due to bond molecules on the particle surfaces. Through analytical models and numerical electromagnetic simulations, we examine various geometric factors that can enhance the magnetic response, including the number of particles, spatial distribution, size, and shape. Our broad investigation provides researchers with analytical and numerical estimates of the magnetic response of nanoparticles, and the associated limits that can be expected. We found that a magnetic field enhancement comparable to the incident field requires very high magnetic susceptibilities, well beyond the values measured in functionalized gold nanoparticles thus far

    Evolutionary and genetic algorithms for design of metadevices working on electric dipole resonance

    Get PDF
    All-dielectric nanophotonics is a rapidly growing field of modern science. Metasurfaces and other planar devices based on all-dielectric nanoparticles lead to manage the light propagation at the nanoscale. Impressive effects such as perfect absorption, invisibility, chirality effects, negative refraction, light focusing in the area with size smaller than wavelength, nano-lasing etc - can be achieved with all-dielectric technologies. While it is needed to use more and more complicated designs for solution of modern nanophotonics' currents tasks, non-classical methods of optimization become relevant. For example, to design reconfigurable metalenses with an additional degree of freedom such as polarizability or temperature dependence, evolutionary or genetic algorithms show their high applicability. In this work, we show a new approach to design metalenses with evolutionary and genetic algorithms. © 2020 IOP Publishing Ltd

    Photonic bandgap plasmonic waveguides

    Full text link
    A novel type of a plasmonic waveguide has been proposed featuring an "open" design that is easy to manufacture, simple to excite and that offers a convenient access to a plasmonic mode. Optical properties of photonic bandgap (PBG) plasmonic waveguides are investigated experimentally by leakage radiation microscopy and numerically using the finite element method confirming photonic bandgap guidance in a broad spectral range. Propagation and localization characteristics of a PBG plasmonic waveguide have been discussed as a function of the wavelength of operation, waveguide core size and the number of ridges in the periodic reflector for fundamental and higher order plasmonic modes of the waveguide

    All-dielectric nanophotonics: the quest for better materials and fabrication techniques

    Get PDF
    All-dielectric nanophotonics is an exciting and rapidly developing area of nano-optics that utilizes the resonant behavior of high-index low-loss dielectric nanoparticles to enhance light-matter interaction at the nanoscale. When experimental implementation of a specific all-dielectric nanostructure is desired, two crucial factors have to be considered: the choice of a high-index material and a fabrication method. The degree to which various effects can be enhanced relies on the dielectric response of the chosen material as well as the fabrication accuracy. Here, we provide an overview of available high-index materials and existing fabrication techniques for the realization of all-dielectric nanostructures. We compare performance of the chosen materials in the visible and IR spectral ranges in terms of scattering efficiencies and Q factors of the magnetic Mie resonance. Methods for all-dielectric nanostructure fabrication are discussed and their advantages and disadvantages are highlighted. We also present an outlook for the search for better materials with higher refractive indices and novel fabrication methods that will enable low-cost manufacturing of optically resonant high-index nanoparticles. We believe that this information will be valuable across the field of nanophotonics and particularly for the design of resonant all-dielectric nanostructures

    Polarization Switching Between Electric and Magnetic Quasi-Trapped Modes in Bianisotropic All-Dielectric Metasurfaces

    Get PDF
    A general strategy for the realization of electric and magnetic quasi-trapped modes located at the same spectral position is presented. This strategy's application makes it possible to design metasurfaces allowing switching between the electric and magnetic quasi-trapped modes by changing the polarization of the incident light wave. The developed strategy is based on two stages: the application of the dipole approximation for determining the conditions required for the implementation of trapped modes at certain spectral positions and the creation of the energy channels for their excitation by introducing a weak bianisotropy in nanoparticles. Since excitation of trapped modes results in a concentration of electric and magnetic energies in the metasurface plane, the polarization switching provides possibilities to change and control the localization and distribution of optical energy at the sub-wavelength scale. A practical method for spectral tuning of quasi-trapped modes in metasurfaces composed of nanoparticles with a preselected shape is demonstrated. As an example, the optical properties of a metasurface composed of silicon triangular prisms are analyzed and discussed

    Magnetic-Electric Metamirror and Polarizing Beam Splitter Composed of Anisotropic Nanoparticles

    Get PDF
    The emergence of new materials and fabrication techniques provides progress in the development of advanced photonic and communication devices. Transition metal dichalcogenides (e.g., molybdenum disulfide, MoS2) are novel materials possessing unique physical and chemical properties promising for optical applications. In this paper, a metasurface composed of particles made of bulk MoS2 is proposed and numerically studied considering its operation in the near-infrared range. In the bulk configuration, MoS2 has a layered structure being a uniaxial anisotropic crystal demonstrating an optical birefringence property. It is supposed that the large-scale and uniform MoS2 layers are synthesized in a vertical-standing morphology, and then they are patterned into a regular 2D array of disks to form a metasurface. The natural anisotropy of MoS2 is utilized to realize the splitting of electric and magnetic dipole modes of the disks while optimizing their geometric parameters to bring the desired modes into overlap. At the corresponding resonant frequencies, the metasurface behaves as either an electric or a magnetic mirror, depending on the polarization of incident light. Based on the extraordinary reflection characteristics of the proposed metasurface, it can be considered an alternative to traditional mirrors and optical splitters when designing compact and highly efficient metadevices, which provide polarization and phase manipulation of electromagnetic waves on a subwavelength scale
    corecore