5 research outputs found

    Evaluation of fiber clustering methods for diffusion tensor imaging

    No full text
    Fiber tracking is a standard approach for the visualization of the results of diffusion tensor imaging (DTI). If fibers are reconstructed and visualized individually through the complete white matter, the display gets easily cluttered making it difficult to get insight in the data. Various clustering techniques have been proposed to automatically obtain bundles that should represent anatomical structures, but it is unclear which clustering methods and parameter settings give the best results. We propose a framework to validate clustering methods for white-matter fibers. Clusters are compared with a manual classification which is used as a ground truth. For the quantitative evaluation of the methods, we developed a new measure to assess the difference between the ground truth and the clusterings. The measure was validated and calibrated by presenting different clusterings to physicians and asking them for their judgement. We found that the values of our new measure for different clusterings match well with the opinions of physicians. Using this framework, we have evaluated different clustering algorithms, including shared nearest neighbor clustering, which has not been used before for this purpose. We found that the use of hierarchical clustering using single-link and a fiber similarity measure based on the mean distance between fibers gave the best results

    Weighted Graph Comparison Techniques for Brain Connectivity Analysis

    Get PDF
    The analysis of brain connectivity is a vast field in neuroscience with a frequent use of visual representations and an increasing need for visual analysis tools. Based on an in-depth literature review and interviews with neuroscientists, we explore high-level brain connectivity analysis tasks that need to be supported by dedicated visual analysis tools. A significant example of such a task is the comparison of different connectivity data in the form of weighted graphs. Several approaches have been suggested for graph comparison within information visualization, but the comparison of weighted graphs has not been addressed. We explored the design space of applicable visual representations and present augmented adjacency matrix and node-link visualizations. To assess which representation best support weighted graph comparison tasks, we performed a controlled experiment. Our findings suggest that matrices support these tasks well, outperforming node-link diagrams. These results have significant implications for the design of brain connectivity analysis tools that require weighted graph comparisons. They can also inform the design of visual analysis tools in other domains, e.g. comparison of weighted social networks or biological pathways. Author Keywords Graph comparison; brain connectivity analysis; brai

    Illustrative uncertainty visualization of DTI fiber pathways

    Get PDF
    Item does not contain fulltextDiffusion Tensor Imaging (DTI) and fiber tracking provide unique insight into the 3D structure of fibrous tissues in the brain. However, the output of fiber tracking contains a significant amount of uncertainty accumulated in the various steps of the processing pipeline. Existing DTI visualization methods do not present these uncertainties to the end-user. This creates a false impression of precision and accuracy that can have serious consequences in applications that rely heavily on risk assessment and decision-making, such as neurosurgery. On the other hand, adding uncertainty to an already complex visualization can easily lead to information overload and visual clutter. In this work, we propose Illustrative Confidence Intervals to reduce the complexity of the visualization and present only those aspects of uncertainty that are of interest to the user. We look specifically at the uncertainty in fiber shape due to noise and modeling errors. To demonstrate the flexibility of our framework, we compute this uncertainty in two different ways, based on (1) fiber distance and (2) the probability of a fiber connection between two brain regions. We provide the user with interactive tools to define multiple confidence intervals, specify visual styles and explore the uncertainty with a Focus+Context approach. Finally, we have conducted a user evaluation with three neurosurgeons to evaluate the added value of our visualization
    corecore