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Abstract

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging (MRI) tech-
nique for measuring diffusion in biological tissue. DTI data is difficult to visual-
ize because of the high amount of information available in each sample point. A
prominent DTI visualization technique is fiber tracking. The fiber tracking algo-
rithm creates streamlines (fibers) that correspond to the major white matter fiber
bundles in the brain. Initialization of the fiber tracking algorithm is done through
the placement of seeds. The placement of these seeds can be done in two ways;
either the user indicates a region of interest or the seeding is done throughout the
whole volume. A problem with seeding throughout the whole volume is that the
amount of fibers that is created is enormous. As a result, the display becomes clut-
tered, individual structures are virtually indistinguishable and it is very difficult to
extract any useful information.

To overcome this problem, we use a clustering algorithm to organize the fibers
into groups that are meaningful and anatomically correct. Two clustering meth-
ods are employed: hierarchical clustering and shared nearest neighbor clustering.
The most appropriate method is determined by validating the cluster results using
a manual classification of the fibers. We examine two kinds of validation meth-
ods: Receiver Operator Characteristic (ROC) Curves and external indices. Be-
cause these methods use different criteria for validation, they also give different
results. In the context of fiber clustering, the goal is to find a validation method
that meets the criteria of physicians. For this purpose, we present a new method
based on the Adjusted Rand index, and we show that it is more suited to the task
of fiber cluster validation. Finally, we use the new validation method to assess the
quality of the segmentations produced by the various clustering methods.
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Chapter 1

Introduction

1.1 Motivation

Diffusion Tensor Imaging (DTI) is a magnetic resonance technique for measuring
diffusion in biological tissue. Diffusion is the result of randomly moving water
molecules. Organized tissues such as muscles and the white matter in the brain
restrict this movement in certain directions. By measuring the diffusion in differ-
ent directions the underlying structures can be explored on a microscopic scale.
In contrast, current state of the art MRI only shows the macrostructures. Infor-
mation provided by DTI is used to investigate brain diseases, muscle structure
and the development of the brain. A tool for visualizing DTI data was created in
collaboration with the Maxima Medisch Center (MMC) in Veldhoven [2].

Diffusion can be represented by a second order tensor (a 3×3 symmetric ma-
trix). DTI data is difficult to visualize because of the high amount of information
available in each sample point. A very interesting and often used technique for
visualizing DTI datasets is fiber tracking. Fiber tracking simplifies the tensor field
to a vector field of the main diffusion direction. This vector field is then used as
a velocity field into which particles are released. The paths these particles fol-
low can be visualized as streamlines. When applied to brain data, the streamlines
correspond to a good approximation to the major white matter fiber bundles [3].

Initialization of the fiber tracking algorithm is done through the placement of
seeds. The placement of these seeds can be done in two ways; either the user
indicates a region of interest (ROI) or the seeding is done throughout the whole
volume. A problem with ROI fiber tracking is that important fibers may be missed
due to the placement of the ROI. Also, in healthy human subjects the position of
the major fiber bundles is known, but in patients some structures might not be in
the expected position and can therefore be missed. With seeding throughout the
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whole volume this problem is avoided, but the amount of fibers that is created is
enormous and the display becomes cluttered: individual structures are virtually
indistinguishable and it is very difficult to extract any useful information.

1.2 Methods and approach

In order to overcome the visual cluttering and other difficulties related to seeding
throughout the whole volume, this study investigates hierarchical visualization
methods for streamlines. A cluster algorithm is used to organize the fibers into
groups that are meaningful and anatomically correct. The enormous amount of
individual fibers is reduced to a limited number of logical fiber clusters that are
more manageable and usable. Once a clustering is obtained, the DTI data can be
viewed at different levels of detail; a global view which shows the fiber clusters
and a local view which shows the individual fibers of a specific cluster.

To assess the quality of the cluster results, we perform a limited validation by
manually classifying the fibers into a number of groups that correspond to actual
anatomical structures. The manual classification can be seen as a gold standard
against which we compare the clusters from the cluster methods. A number of
validation methods are examined, and we propose several improvements to make
them more suitable for the task of fiber cluster validation.

The clustering and validation methods are then applied to DTI data sets of
(healthy) human brains. The results of two clustering methods, hierarchical clus-
tering and shared nearest neighbor clustering, are presented, validated and com-
pared with each other.

1.3 Outline of the thesis

Chapter 2 provides background information on DTI. It discusses fiber tracking
and other DTI visualization techniques. Chapter 3 reviews fiber cluster methods
available from literature. Also, a cluster method that has not yet been used for
fiber clustering is presented here. Chapter 4 describes the validation framework.
Chapter 5 presents a comparison of two cluster methods. Chapter 6 contains the
conclusion and future work sections.
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Chapter 2

Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) gives insight into the structure of the brain and
other living tissue. This chapter provides an introduction to DTI and discusses the
difficulty of correctly visualizing DTI data. First, section 2.1 gives a biological
and mathematical overview of DTI. After that, several visualization techniques
are discussed in section 2.2. Finally, a prominent visualization technique called
fiber tracking is explained in more detail in section 2.3.

2.1 Basics

Diffusion Tensor Imaging (DTI) is a magnetic resonance technique that quan-
tifies the average diffusion of moving water molecules in biological tissue [3].
This random movement of water molecules is caused by internal thermal energy
and is known as Brownian motion. Certain tissues limit the movement of water
molecules, reducing the distance they travel. By measuring the preferred direction
of diffusion it is possible to reconstruct the underlying structure of the tissue. Due
to its ability to measure this physical diffusion process, DTI allows visualization
of micro-structures below the resolution of the scanner.

Tissue that lets molecules travel more easily in certain directions is called
anisotropic. An example of anisotropic tissue is white matter in the brain. White
matter consists of fiber tracts that connect regions of grey matter. In white matter
water diffuses more in the direction of fiber tracts than in the perpendicular di-
rection. Figure 2.1 shows how fiber tracts hinder the movement of molecules (in-
dicated by arrows). In contrast to white matter in which diffusion is anisotropic,
grey matter is largely isotropic: diffusion is equal in all directions. Other kinds of
tissue that show anisotropic diffusion include muscles and the heart. In this thesis
only DTI scans of the human brain are considered.
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Figure 2.1: Anisotropic diffusion [3]

Diffusion can be represented by a 3×3 positive symmetric tensor:

D =



Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz




Diagonalization of this tensor gives three positive eigenvaluesλ1, λ2, λ3 (sorted in
decreasing order) and corresponding eigenvectorsEev1, Eev2, Eev3. The eigenvectors
are orthogonal to each other and represent the three principal diffusivity direc-
tions in a voxel. Together with the eigenvalues they contain all information of the
original tensor.

2.1.1 Scalar indices

A scalar index is a measure that classifies the diffusion tensor using the relations
between the eigenvalues [25]. By applying a scalar index, a DTI dataset can be
simplified to a scalar dataset. Although a scalar cannot represent all the informa-
tion of the tensor, a scalar dataset is often more easy to interpret and visualize than
a complex DTI dataset. Westin et al. [25] present indices that distinguish between
three categories of diffusion: linear anisotropy, planar anisotropy and isotropy.

Linear anisotropy (Cl) is diffusion mainly in one direction; the eigenvalue of the
main eigenvector is much larger than the other two eigenvalues(λ1 > λ2 =
λ3) and can be visualized with a cigar shape (see figure 2.2a). It is defined
as:

4



Cl = λ1− λ2

λ1+ λ2+ λ3

Planar anisotropy (Cp) is diffusion restricted to a plane defined by the two
eigenvectors corresponding to the two largest eigenvalues (λ1 = λ2 > λ3)
and can be thought of as a pancake shape (see figure 2.2b). It is defined as:

Cp= 2(λ2− λ3)

λ1+ λ2+ λ3

Isotropy (Cs) indicates diffusion in all directions (λ1 = λ2 = λ3); this is best
visualized with a spherical shape (see figure 2.2c). It is defined as:

Cs= 3λ3

λ1+ λ2+ λ3

(a) (b) (c)

Figure 2.2: Classification of diffusion [2].

Another often used index is called Fractional Anisotropy (FA)[1]. FA distin-
guishes between isotropic and anisotropic diffusion, but not between linear and
planar diffusion. It is defined as:

FA=
√
(λ1− λ2)+ (λ2− λ3)+ (λ1− λ3)√

2(λ1+ λ2+ λ3)

In isotropic tissue FA = 0 and in anisotropic tissue FA = 1.
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2.2 Visualization

Visualization of DTI data is difficult because of the high dimensionality of the in-
formation. Diffusion is represented by a 3×3 symmetric tensor, which means that
each voxel contains 6 scalar values. Creating a DTI visualization that is both or-
derly as well as detailed is a complex task and the topic of ongoing research. Some
visualization methods show the complete tensor, but only in a small area, where
they provide very detailed local information. Glyphing is an example of such a
method. Other visualization methods, for instance fiber tracking, simplify the ten-
sor field to a vector field, thereby making it easier to display the data throughout
the whole volume and provide global information to some extent.

2.2.1 Color-coding

Color-coding is a 2D visualization technique in which voxels are assigned a color
according to some local characteristic of the tensor. An example of such a charac-
teristic is the type of diffusion in a particular voxel, which can be measured by a
scalar index like FA. Figure 2.3a shows a slice of DTI data that is color-coded by
mapping the FA index of each voxel to a color using a look-up-table.

(a) (b)

Figure 2.3: Color-coded slices of DTI data.

Another characteristic that can be used for color-coding is the direction of the main
eigenvector. In this case, different colors are assigned to the principal directions of
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the main eigenvector. The X, Y and Z direction of the main eigenvector correspond
to the primary R, G, B color channels. Red voxels indicate diffusion mainly in the
left-right direction, blue voxels in the bottom-top direction and green voxels in the
front-back direction. Because the sign of the eigenvector is not defined opposing
directions have the same color. In figure 2.3b a slice of DTI data is color-coded
using the main eigenvector and then weighted with the FA index. Voxels with a
high FA (anistropic tissue) get a high intensity, and voxels with a low FA (isotropic
tissue) get a low intensity. Both visualizations were created with the DTI Tool [2].

2.2.2 Glyphing

A glyph is a geometric object which size and orientation are defined by the tensor.
The orientation of the glyph is determined by the main eigenvector and its size
by the eigenvalues. Glyphs can be basic shapes like boxes and ellipsoids or more
complex shapes such as superquadric tensor glyphs [19]. Glyphs can be used in
3D as well as 2D visualizations, but because of occlusion and the amount of infor-
mation glyphs convey they are mostly used in small 2D regions. Figure 2.4 shows
two kinds of glyphs which are color-coded using the FA index mapped to a hue
lookup-table. This visualization was created with the DTI Tool [2].

Figure 2.4: Glyphs: boxes (left) and ellipsoids (right).

2.2.3 Direct volume rendering and texture based methods

Direct volume rendering is a visualization technique in which no intermediate ge-
ometry is created. Instead, transfer functions are used that map certain properties
of the tensor field to visual properties like color, opacity and shading. A challenge
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with volume rendering is to define these transfer functions; some features are of
more interest than others, and these must not be concealed by less important struc-
tures. A problem with volume rendering is that it is computational expensive, and
user interaction is also limited (see figure 2.5).

Figure 2.5: Volume rendering [20].

2.2.4 Other tensor visualization techniques

Other visualization techniques that can be applied to tensor fields are volume de-
formation, geodesics and topology visualization. Volume deformation [30] con-
siders the tensor field to be a force field that deforms an object placed in it.
Geodesic surfaces [11] show the effect of the tensor field as a deformation of
flat space. And finally, in a topology based method [31] a skeleton is created by
extracting certain specific features from the tensor field.

2.3 Fiber tracking

At the moment, one of the most promising DTI visualization techniques is fiber
tracking. The goal of fiber tracking is to reconstruct continuous 3D trajectories
from the discrete DTI data. There are two types of fiber tracking algorithms: line
propagation and energy minimization [22]. Line propagation works by assuming
that the main diffusion direction in a voxel is aligned with the orientation of the
white matter tracts. From a starting point a line is propagated through the volume
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in the direction of the main diffusion. Energy minimization techniques, on the
other hand, search for the energetically most favorable path between points. In
this thesis only fibers created with the line propagation method are considered.

2.3.1 Algorithm

The fiber tracking algorithm is initialized by the placement of seed points. The
placement of these seed points can be done in one of two ways:

• Seeding is done in a region of interest (ROI) which is defined by the user.
There are two kinds of ROI’s: seed-ROI’s and through-ROI’s. Seed-ROI’s
are regions in which seeds are placed at a regular distance from each other.
Through-ROI’s do not contain seeds, but are regions that fibers have to pass
through to be included in the final visualization. What fibers are created
depends heavily on the placement of the ROI’s: important fiber tracts may be
missed if a region is incorrectly placed. Also, the anatomy of a patient may
differ from the anatomy of a healthy subject and this makes the placement
of the ROI difficult. Multiple ROI’s can be used to find complex structures.

• Seeding is done throughout the whole volume. This reconstructs fibers in
the complete volume and is therefore computationally very expensive. The
number of fibers can be very large depending on the size of the data set,
the distance between seeds and the stopping criterion. The advantage is that
structures are not missed due to the wrong placement of the ROI. However,
it is very difficult to find specific structures because of occlusion and limited
user interaction.

Starting from a seed point, a fiber is not only traced in the direction of the main
eigenvector, but also in the opposite direction. This is because the sign of the
eigenvector is undefined; it can be positive or negative.

Fiber tracking is usually done in a continuous vector field. DTI data however, is
measured on a regular discrete 3D grid. In order to get a continuous vector field,
the eigenvectors are interpolated or calculated from an interpolated tensor field.

Fiber tracking is stopped in areas with low anisotropy. Low anisotropy means
that the main diffusion direction is poorly defined, very sensitive to noise and
therefore not reliable anymore. Another reason to stop tracking is when the an-
gle between two steps becomes too big, because it is assumed that fibers from
anatomical structures are smooth most of the time. And finally, fiber tracking is
discontinued if fibers go beyond the boundaries of the volume.
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2.3.2 Problems

A major challenge with DTI data is noise. Noise causes fibers to be broken or leads
to erroneous pathways. At the moment it is not exactly known what anatomical
structures can be found in DTI data and it is therefore very difficult to identify
noise. Only when it causes a major artifact or distorts a large well-known structure,
like the corpus callosum, it can be clearly identified. However, this requires prior
medical knowledge about how specific structures look like, which is not always
available; identification and validation of fiber tracts is an active research area.

Another problem with fiber tracking is a phenomenon called partial volume effect.
Due to the limited resolution of DTI datasets certain voxels contain information
about more than one fiber bundle. This causes trouble because the fiber tracking
algorithm assumes that each voxel contains only one main fiber direction. In areas
where planar anisotropy is high this assumption does not hold anymore. Places
at which fibers cross, kiss, converge or diverge have planar anisotropy (see figure
2.6). In these voxels, diffusion is high in more than one direction and it is unclear
which direction should be followed. The fiber tracking algorithm simply stops in
these ambiguous areas, which results in broken fibers. Instead of stopping, another
option is to generate a surface in areas with high planar anisotropy [2].

Figure 2.6: Ambiguous areas: kissing fibers (left), crossing fibers (middle) and
converging/diverging fibers (right) [2]

A related problem occurs when two areas corresponding to different fiber bundles
are poorly separated. Fiber tracking initiated in one area often continues in the
other area, resulting in fiber tracts that are ”glued” together. That is, these fibers
consist of two parts which belong to different anatomical structures. This problem
can be partially solved by changing the stopping criterion: setting a higher mini-
mum anisotropy reduces the number of fibers that are glued together, but increases
the number of broken fibers. Another way to solve this is by using AND-regions:
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erroneous fiber tracts are filtered out by specifying regions through which the
fibers must pass. However, this is not possible with seeding throughout the whole
volume.
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Chapter 3

Fiber Clustering

The fiber tracking algorithm described in the last chapter produces a set of fibers
(see figure 3.1). This chapter reviews the methods available in literature for clus-
tering the fibers into meaningful groups. After the introduction the two essential
components of the clustering process are described: the proximity measure and
the clustering algorithm. Finally, the postprocessing of clusters is discussed.

Figure 3.1: Fibers of a human brain created by a fiber tracking algorithm with
seeding throughout the whole volume. This visualization was created with the
DTI Tool [23].
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3.1 Overview

Clustering is the classification of a set of objects into groups that have meaning in
the context of a specific problem [17]. The problem in this case is to partition the
fibers in such a way that the clusters correspond to the anatomical fiber bundles
present in the human brain. Section 3.2 describes the main anatomical character-
istics of fiber bundles.

Figure 3.2 depicts the steps that are involved in the visualization of fiber clusters.
It shows how the data flows through the system; from the original tensor field
to the final fiber clusters. As can be seen, the fiber clustering process gets its
input from the fiber tracking algorithm. The performance of the fiber clustering
is therefore directly dependent on the quality of the fibers produced by the fiber
tracking algorithm [5].

fiber tracking fiber clustering

fiberstensors

fiber

clusters

proximity

measure

clustering

algorithm

proximity

matrixfibers

fiber

clusters

Figure 3.2: Fiber clustering in the visualization process

The steps involved in the fiber clustering process are (see figure 3.2 bottom):

Proximity measure. This is a function that computes the (dis)similarity between
pairs of fibers. Section 3.3 gives an overview of the proximity measures that
can be found in literature.

Clustering algorithm. The proximity function is used by the clustering algo-
rithm to produce a partition of the set of fibers. Clustering algorithms come
in various forms; some produce a single partition, others create a hierarchy
of partitions. Section 3.4 reviews the clustering methods that have been used
to cluster fibers. Also, a clustering method is presented that has not yet been
used for fiber clustering.
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Once the clusters are acquired, they can be quantified and visualized. This includes
fiber coloring, shape analysis and surface rendering. Section 3.5 describes the
techniques that are used to postprocess fiber clusters.

3.2 Characteristics of fiber bundles

The function of white matter tracts (fiber bundles) is to interconnect regions of
grey matter in the brain. Figure 3.3 shows a schematic picture of the brain in
which a number of fiber bundles are depicted.

(a) Global view (b) Detailed view

Figure 3.3: Schematic picture of the brain. Adapted from Brun et al. [6] and Gray
[14].

As can be seen in figure 3.3a, fiber bundles come in various shapes and sizes.
Some bundles consist of a relatively small number of long fibers which form a
kind of tube structure. Other bundles consist of a large number of smaller fibers
which form a thin surface.

Figure 3.3b shows a closeup of a fiber bundle. A number of observations can be
made about the relationship between fibers:

• A pair of fibers from the same bundle that are direct neighbors of each other,
are separated by a small distance and have a similar shape.

• A pair of fibers from the same bundle that arenot direct neighbors, can
have a considerable distance between them, and can have quite different
shapes. However, between any two dissimilar and distant fibers from the
same bundle, there are other fibers in between that cover the distance and
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change of shape. That is, there is a smooth transition between any two fibers
from the same bundle.

Here is an example to illustrate these observations. Consider the two emphasized
fibers Fi and F j in figure 3.3b. As far as shape is concerned, they represent the
two fibers from this particular bundle that are the least similar. But althoughFi

and F j are very different they are surrounded by fibers that are quite similar in
shape. In other words, there is a gradual change of shape between any two fibers
from the same bundle.

Also important to keep in mind is that the fiber bundles depicted in figure 3.3 are
idealized versions of the bundles that are typically found in DTI scans of actual
human brains. A limited resolution, noise and other problems might cause the
absence of certain parts of bundles, or the presence of erroneous pathways (see
section 2.3.2).

3.3 Proximity measures

A clustering method groups items together that are similar in some way, and thus
needs a way to measure similarity between objects. A proximity measure com-
putes either similarity or dissimilarity between a pair of objects. The more equal
two objects are, the larger a similarity measure and the smaller a dissimilarity
measure. For instance, the Euclidean distance between two points in space is a
dissimilarity measure, while a correlation coefficient is an example of a similarity
measure [17].

In this thesis all proximity measures are symmetric: the proximity between fibers
Fi andF j is the same as the proximity between fibersF j andFi . Also, a fiber has
the same degree of proximity with itself.

There is no standard way to compute the proximity between a pair of fibers. Com-
puting the proximity between a pair ofpoints is relatively easy: the Euclidean
distance gives a good indication of dissimilarity. However, a fiber is represented
by an ordered list of points and for such a high dimensional object the definition
of proximity is less obvious. This section reviews some of the proximity measures
that can be found in literature.

In the following equations,‖ . ‖ is the Euclidean norm.
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3.3.1 Closest point distance

A proximity measure that provides only very coarse information about the dissim-
ilarity of a pair of fibers is the closest point distance [8]. The closest point distance
dc is defined as the minimum distance between pointspk and pl , wherepk is a
point on fiberFi and pl is a point on fiberF j :

dc(Fi , F j ) = min
pk∈Fi ,pl∈F j

‖ pk − pl ‖ .

The closest point distance is not able to differentiate between fibers from different
bundles if they cross, kiss, converge or diverge. In all these cases this measure
underestimates the distance.

3.3.2 Mean of closest point distances

A distance measure that provides more global information about the dissimilarity
of a fiber pair is the mean of closest point distances [8]. Each point on one fiber is
mapped to the closest point on the other fiber, thus forming point pairs. The fiber
distance is defined as the mean of these closest point pair distances:

dM(Fi , F j ) = mean(dm(Fi , F j ), dm(F j , Fi ))

with
dm(Fi , F j ) = mean

pl∈Fi

min
pk∈F j

‖ pk − pl ‖ .

This measure has the potential to give an accurate indication of distance between
fibers. A problem might be if two fibers from the same bundle have widely dif-
ferent lengths, for example due to limitations of the fiber tracking algorithm. This
could cause an overestimation of the distance.

3.3.3 Hausdorff distance

The Hausdorff distance is very conservative: two fibers are considered similar only
if all distances between closest point pairs are small [8]. The Hausdorff distance
is defined as the maximum distance between two closest point pairs:

dH (Fi , F j ) = max(dh(Fi , F j ),dh(F j , Fi ))
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with
dh(Fi , F j ) = max

pk∈Fi

min
pl∈F j
‖ pk − pl ‖ .

This measure has the tendency to overestimate the distance between fibers. For
various reasons fibers from the same bundle may be of different length, or might
not run close for the entire length, and in these cases the maximum distance be-
tween two closest point pairs might be fairly large.

3.3.4 End points distance

Brun et al. [6] consider fibers that have close endpoints as similar. The reasoning
behind this is that fibers from the same anatomical structure connect the same
areas of the brain. Except for the positions of the endpoints all other information
regarding the fibers is discarded.

Similarity between fibersi and j is defined as:

fi = ( fi,1, fi,end),

f̃i = ( fi,end, fi,1),

SE(i, j ) = exp
(
−‖ fi− f j ‖2

2σ 2

)
+ exp

(
−‖ fi− f̃ j ‖2

2σ 2

)
.

In this equation,fi,1 and fi,end are the first and last coordinates of fiberi .

For this similarity measure we propose an alternative definition which measures
distance and does not have any additional parameters:

d1 =‖ fi,1− f j,1 ‖ + ‖ fi,end− f j,end ‖
d2 =‖ fi,1− f j,end ‖ + ‖ fi,end− f j,1 ‖

DE(i, j ) = min(d1, d2).

These measures could have problems when fibers are damaged or when fibers
from different bundles start and end in approximately the same region. This might
happen when fibers from different bundles are ”glued” together (see section 2.3.2).

3.3.5 Distance above threshold

Zhang and Laidlaw [27] define the dissimilarity between two fibers as follows:
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Dt =
∫

s max(dist(s)− Tt , 0)ds
∫

s max
(

dist(s)−Tt
|dist(s)−Tt | , 0

)
ds
.

In this equation,s parameterizes the arc length of the shorter fiber, and dist(s) is
the shortest (Euclidean) distance from locations of the shorter fiber to the longer
fiber. Tt is a threshold, and only distances above this threshold contribute to the
distance (see figure 3.4a).

(a) ThresholdTt [26]. (b) Potential prob-
lem case [28].

Figure 3.4: Distance above threshold

Fibers do not need to be of comparable length to be considered similar by this
measure. This works in favor of damaged fibers which are often much shorter
than undamaged fibers from the same bundle.

This distance measure works less well if two fibers with different lengths actually
belong to different bundles (see figure 3.4b). In this figure, the shorter fibers is
considered to be close to both fiberA as well as fiberB, although fibersA andB
are not similar at all. Because fibers acts as a bridge, all three fibers might end up
in the same cluster.

3.3.6 Corresponding segment distance

Ding et al. [9] define similarity by establishing a corresponding segment between
pairs of fibers. A corresponding segment can be thought of as the portion of a fiber
that has a point-wise correspondence to a portion of another fiber (see figure 3.5).
The more the fibers overlap, the more similar they are. A seed plane (also called
region of interest, see section 2.3.1) is used to determine a corresponding point
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on both fibers. From this (seed) point the corresponding segment can be found by
searching the shorter end along both directions.

Figure 3.5: Definition of a corresponding segment. In this figure, portionPi Qi of
fiber Fi is the corresponding segment to portionPj Q j of fiber F j [10].

First, a corresponding ratioRcs between a pair of fibers is defined:

Rcs =
Lcs

L i + L j − Lcs
.

In this equation,Lcs is the length of the corresponding segment,L i andL j are the
length ofFi andF j respectively. This ratio is 0 if fibers have no overlap at all, and
is 1 if they overlap completely.

Then, the similaritySCS between a pair of fibersFi andF j is defined as:

SCS(Fi , F j ) = Rcs · exp(−D/C).

In this equation,Rcs is the corresponding segment ratio,D is the mean Euclidean
distance between corresponding segments, andC is a coefficient forD. If Fi and
F j are identical thenSCS is 1, and it decreases either if the corresponding segment
ratio decreases, or if the mean distance increases. CoefficientC is used to weigh
the influence of the corresponding ratio and the mean distance; the largerC is, the
less influenceD has on the similarity measure. Ding et al. [9] use a value of 1.0
for C.

This measure uses a seed (ROI) plane to define similarity and it is not directly
obvious how to establish a corresponding segment without the use of such a seed
plane. This is a problem in situations in which fibers have been created with the
all volume seeding approach, in which case a seed plane does not exist.
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3.3.7 Mapping to an Euclidean feature space

Brun et al. [5] map the high dimensional fibers to a relatively low dimensional
Euclidean feature space and use a Gaussian kernel to compare the fibers in this
new space.

First, each fiber is mapped to a 9-dimensional Euclidean feature space. This map-
ping maintains some but not all of the information about fiber shape and position.
From the points of a fiber the mean vectorm and the covariance matrixC is cal-
culated. Furthermore, the square root of the covariance matrix,G = √C is taken
to avoid non-linear scaling behavior. A fiber can now be described as:

8(F) = (mx,my,mz, gxx, gxy, gxz, gyy, gyz, gzz)
T .

Then, the similarity between a pair of fibersFi andF j can be calculated using a
Gaussian kernel:

SK (8(Fi ),8(F j )) = exp

(
−‖ 8(Fi )−8(F j ) ‖2

2σ 2

)
.

The parameterσ adjusts the sensitivity of the similarity function. Similar fibers
are mapped to unity, while dissimilar fibers are mapped to values close to 0.

3.4 Clustering methods

The proximity measures defined in the last section are used to establish a rela-
tionship between fibers. The proximities are compiled in the proximity matrix, in
which rows and columns correspond to fibers. The proximity matrix is the input
to a clustering algorithm [17].

A clustering algorithm imposes a type of classification on the input data. This
classification can take various forms. Apartitional clustering algorithm produces
a single partition of the input, while ahierarchicalclustering algorithm creates a
nested hierarchy of partitions. Ahard clustering algorithm produces an exclusive
partition, in which each object belongs to exactly one cluster, while afuzzyclus-
tering algorithm creates a nonexclusive classification, in which each object has a
certain degree of membership to each cluster [17].

The following section reviews the clustering methods that have been used by other
research groups for clustering fibers. After that, an additional clustering method
called shared nearest neighbor clustering is presented which has not yet been used
for fiber clustering.
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3.4.1 Hierarchical clustering

Zhang and Laidlaw [27] use a hierarchical clustering method to cluster fibers. A
hierarchical clustering method transforms a proximity matrix into a sequence of
nested partitions [17]. Anagglomerativehierarchical clustering method works as
follows:

1. Put each item into an individual cluster.

2. Merge the two most similar clusters.

3. Repeat step 2 until there is only a single cluster left.

A divisivemethod works the other way around: it starts with a single cluster con-
taining all the items, and at each stage splits one cluster until every item is in a
singleton cluster.

Based on the way similarity between clusters is defined, several variations of the
agglomerative hierarchical clustering method can be devised. The two most basic
variations are single-link and complete-link [18].

A B

C

D

E
F

Cluster 1 Cluster 2

(a)

A B C D E F

(b)

Figure 3.6: On the left is a clustering consisting of two clusters. On the right is the
dendrogram resulting from the single-link method. To obtain the segmentation on
the left the dendrogram is cut at the level indicated by the the dotted line.

In the single-link algorithm, the distance between two clusters is the distance be-
tween the closest pair of items (one item from the first cluster, the other item from
the second cluster). The single-link method works well for elongated and well
separated clusters and it can find clusters of different sizes and complex shapes.
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It performs poorly on data containing noise, because noise may act as a bridge
between two otherwise separated clusters. This is known as the chaining effect
[18].

In the complete-link algorithm, the distance between clusters is defined as the
maximum distance between a pair of items (one item from either cluster). This
tends to produce compact, more tightly bound clusters. The complete-link algo-
rithm is less versatile than the single-link algorithm because it is unable to find
clusters of varying sizes or complex shapes [18].

In the weighted-average algorithm, the distance between clusters is defined as the
average of the minimum and the maximum distance between a pair of items from
the different clusters.

The result of a hierarchical clustering method is a special tree structure called
dendrogram. A dendrogram shows the nested clustering of items and the item
distances at which clusters change. By cutting the dendrogram at a certain level a
partition of the data is obtained (see figure 3.6).

Both the single-link and the complete-link method are used by Zhang and Laidlaw
[27], although in subsequent papers [28, 29] they abandon the use of the complete-
link method. The weighted-average method has not yet been used in the context
of fiber clustering.

3.4.2 Partitional clustering

In contrast to hierarchical clustering methods, partitional clustering methods only
produce a single partition of the data.

Corouge et al. [8] use a partitional clustering method that propagates cluster la-
bels from fiber to neighboring fiber. It assigns each unlabeled fiber to the cluster
of its closest neighbor, provided that the distance to this closest neighbor is below
a threshold. A partition of the data with a specific number of clusters can be ac-
quired by setting a threshold; a low threshold gives many clusters, whereas a high
threshold results in a reduced number of clusters.

Ding et al. [9] propose a clustering method based on the K-most-similar neighbors
method. A fiberF is grouped with up tok of its closest neighbors, provided that
the distance to a neighbor is below a threshold. The neighbors of a fiberF are
those (eight) fibers whose seedpoints are the neighbors of the seedpoint ofF . This
process is repeated for each fiber. At the end, the connected components form the
clusters. This method assumes the presence of a seedplane, which is only the case
for ROI fiber tracking. The parameters that have to be set are the threshold and
the number of neighbors to consider. A high threshold prevents the grouping of
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fibers from different anatomical structures, whereas the number of neighborsk
determines the compactness of the clusters.

3.4.3 Graph theoretic clustering

In graph theoretic clustering the items to be clustered are the nodes of an undi-
rected graph and the edges represent the relationship between the nodes. The re-
lationship can be based on similarity or dissimilarity depending on the algorithm.

Brun et al. [6] use a spectral embedding technique called Laplacian eigenmaps
for clustering fibers. First, a sparse graph is created in which each fiber is a node
and edges exist between nodes of neighboring fibers. Each edge receives a weight
based on the distance between fibers; the larger the distance between fibers the
smaller the weight. The structure of this graph can be mapped to a low dimensional
Euclidean space by solving an eigenvector problem. Data points that are close to
each other in the original space are mapped to nearby points in the new Euclidean
space. Once the fibers are reduced to points in the low dimensional Euclidean
space, they can be mapped to a continuous RGB color space. This way similar
fibers are assigned similar colors.

In another paper by Brun et al. [5], a clustering method based on normalized cuts
is used to group fibers. To start with, an undirected graph is created in which
nodes correspond to fibers, and each edge is assigned a weight that represents
the similarity between fibers. Most edges are expected to have a weight close
to 0 (dissimilar) so the graph can be considered sparse. To partition the nodes
into two disjoint groups the graph is cut. A normalized cut tries to minimize the
cut between the two partitions and penalizes partitions in which some nodes are
only loosely connected to the complete graph. A clustering can be achieved by
cutting the graph repeatedly until the desired number of clusters are found or if the
weights crossing the cut are above a certain threshold. The connected components
of the graph define the clusters.

3.4.4 Fuzzy clustering

Shimony et al. [16] employ a fuzzy c-means algorithm. Fuzzy clustering methods
do not produce a hard clustering of the data [18]. Instead, each item is associated
with a cluster by a membership function that takes values between 0 and 1. A
larger value of the membership function indicates a higher confidence that the
item belongs to the cluster. The result of a fuzzy clustering can be converted to a
hard clustering by thresholding the value of the membership function.
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3.4.5 Shared nearest neighbor clustering

Shared nearest neighbor clustering [12] is a clustering algorithm that has not yet
been used for fiber clustering. We want to use the shared nearest neighbor algo-
rithm because it has a number of beneficial characteristics in the context of fiber
clustering. In particular, it can find clusters of different sizes and shapes in data
that contains noise and outliers. These characteristics are beneficial because the
anatomical fiber bundles are also of different sizes and shapes, and DTI data is
often very noisy.

The shared nearest neighbor algorithm is based on the notion that two data points
that share a lot of neighbors probably belong to the same cluster. In other words,
”the similarity between two points is confirmed by their common (shared) neigh-
bors” [12]. The algorithm works as follows:

1. A k nearest neighbor graph is constructed from the proximity matrix. In
this graph, each data point corresponds to a node which is connected to the
nodes of thek nearest neighbors of that data point.

2. A shared nearest neighbor graph is constructed from thek nearest neighbor
graph. In a shared nearest neighbor graph, edges exist only between data
points that have each other in their nearest neighbor lists. That is, if pointp
is one of thek closest neighbors of pointq, andq is also one of thek closest
neighbors of pointp, then an edge exists betweenp andq. The weight of
this edge is computed as follows:

strength(p,q) =
∑

(k+ 1−m)(k+ 1− n),whereim = jn.

In this equation,m andn are the positions of a shared neighbor inp and
q’s nearest neighbor lists. Thus, a ”close” shared neighbor is found to be
more important than a ”far” shared neighbor. In general, a higher value for
k increases the number shared neighbors and this in turn leads to higher
weights between data points.

3. Clusters are obtained by removing all edges from the shared nearest neigh-
bor graph that have a weight below a certain threshold. In general, a low
edge threshold results in few clusters, because most connections are pre-
served. A high threshold results in a lot of clusters, because most connec-
tions are broken. Which value for the edge threshold is considered ”low” or
”high” depends on the value ofk.

The parameters of the shared nearest neighbor algorithm are the size of the near-
est neighbor listk and the edge threshold. Notice that the number of clusters is
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not a parameter of the algorithm. ”Depending on the nature of the data, the al-
gorithm finds the natural number of clusters for the given set of parameters.” [12]
Which parameter settings are appropriate in the context of fiber clustering remains
unclear.

A question that is left unanswered for the moment is if the shared nearest neighbor
clustering algorithm improves on any of the fiber clustering algorithms that have
been discussed in this section. This question is answered in chapter 5, in which
we apply the shared nearest neighbor clustering algorithm to actual DTI data and
validate the results using the validation procedure described in chapter 4.

3.5 Postprocessing of fiber clusters

Once the fibers are clustered into coherent groups, they can be visualized and
analyzed. This includes:

• Coloring the fibers according to which cluster they belong (see figure 3.7a).

• Segmentation of voxel space (see figure 3.7b).

• Quantification of bundle properties [9, 8]. Measuring the properties of a
group of fibers might be of more interest than the properties of individual
fibers. Information that can be derived from the bundles include geometric
properties like curvature and torsion, and physical parameters like mean
longitudinal and perpendicular diffusivity.

• Rendering of a bundle surface. Ding et al. [9] generate a surface by identify-
ing a number of cross-sectional planes that are perpendicular to the average
direction of the fibers in that bundle. In each plane a closed contour of the
bundle is acquired by taking the convex hull of all the points at which fibers
intersect the cross-sectional plane. The contour is interpolated and triangu-
lated between neighboring cross-sectional planes. Flat shading is used to
render the surface (see figure 3.7c).

• Matching of clusters across subjects [29]. Here, the goal is to identify clus-
ters corresponding to anatomical bundles that can be reliably found across
multiple datasets.
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(a) Fiber coloring [5]. (b) Voxel coloring [5]. (c) Bundle surface[9].

Figure 3.7: Visualization techniques for fiber bundles.
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Chapter 4

Validation

The distance measures and clustering methods described in the previous chapter
can be used to partition a set of fibers. Figure 4.1 shows two different clusterings
of the same set of fibers. This chapter describes various techniques for validating
these cluster results. Our approach is based on the creation of a gold standard to
which the cluster results are compared. Several comparison methods are examined
and a suitable new method is developed with the help of physicians from the
Maxima Medical Center.

Figure 4.1: Two different clusterings of the same set of fibers.
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4.1 Overview

Figure 4.2 shows the steps that are involved in the validation process. The fibers
created with the fiber tracking algorithm are clustered using one of the proximity
measures and one of the clustering algorithms described in chapter 3. The result
is a partitioning of the fibers into a number of clusters. Each combination of prox-
imity measure and clustering method produces a different clustering. The basic
question here is what distance measure and what clustering method produce the
clustering that is closest to the optimal clustering.

Evaluate validation

methods

Cluster

Validate clusterings

by physicians

Fibertracking

set of

fibers

Validate

Define clusters

by physicians

clusterings

ranking

(gold standard)
ranking

feedbackdata

cluster

methods

validation

methods

best

validation
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best

clustering

method

clustering
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Figure 4.2: Overview of the validation process.

The first step in the validation process involves the creation of a gold standard,
which is considered our optimal clustering. This is done by manually classifying
the fibers into a number of bundles. The classification process is described in
section 4.2.

Once a gold standard is established, a validation method is chosen to determine
the agreement between the gold standard and the various cluster results. There are
a number of validation methods available in literature. Section 4.3 examines Re-
ceiver Operator Characteristic (ROC) curves and external indices. Because these
methods use different criteria for validation, they also give different results. In
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the context of fiber clustering, the goal is to find a validation method that meets
the criteria of physicians. For this purpose, we propose several adjustments to the
validation methods available in literature.

The various validation methods are evaluated in section 4.4. This is done by letting
physicians create a ranking of a number of clusterings. This ranking is then used
as a gold standard to which the rankings created by the various validation meth-
ods are compared. The validation method that produces the ranking that has the
highest correlation with the ranking of the physicians is considered the best vali-
dation method. This method is used in the next chapter to pick the best clustering
method.

4.2 Classification

The first step of the validation process is to establish a gold standard to which the
cluster results can be compared. For our purposes, the gold standard is a manually
defined classification of a set of fibers. The fibers are classified into a number of
anatomical structures, called bundles, for which is known that they can be reliably
identified using the fiber tracking technique. Ideally, the classification is done by
physicians. However, for this study we did the classification ourselves, and it was
verified by physicians from the MMC.

Our gold standard includes the following bundles: the corpus callosum, the fornix,
the cingulum (both hemispheres) and the corona radiata (both hemispheres).
These anatomical structures are identified in a number of studies [7, 13, 24] and
can be reconstructed with the fiber tracking technique.

Figure 4.3 shows the result of a classification performed on an actual DTI data set
of a healthy subject. Only fibers belonging to the gold standard are shown.
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(a) Side view. (b) Top view. (c) Bottom view.

Figure 4.3: Three views of a classification of a DTI data set. Colors are used to
distinguish between the different bundles. The meaning of the colors and abbrevi-
ations is given in table 4.1.

Bundle Color Number of fibers

cc Corpus callosum purple 716

crl Corona radiata (left hemisphere) yellow 110

crr Corona radiata (right hemisphere)light blue 69

cgl Cingulum (left hemisphere) green 23

cgr Cingulum (right hemisphere) blue 11

fx Fornix red 11

Unclassified(not shown) 2655

Total 3595

Table 4.1: Anatomical structures of the manual classification.
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Of course, these six anatomical structures represent only a small portion of the
complete set of structures known to be present in the human brain. There are
several reasons for not using the other structures:

• Some anatomical structures require the parameters of the fiber tracking al-
gorithm to be set to values that do not produce reasonable results when do-
ing an all volume fiber tracking. For instance, some structures can only be
found using a very low anisotropy threshold. This means that fiber tracking
is done in areas where the main eigenvector is very unreliable. This leads
to a lot of erroneous fibers. With ROI fiber tracking, most of these erro-
neous fibers are automatically removed, because they do not pass through
the required ROI’s. With all volume fiber tracking, these erroneous fibers
are much harder to remove, and therefore the anisotropy threshold has to be
set higher.

• Some anatomical structures can not yet be reliably identified with the cur-
rent fiber tracking techniques. It is expected that in the future more anatom-
ical structures can be recognized with the aid of higher-resolution scans
[24], or more robust fiber tracking techniques. More generally, each tech-
nique that improves the quality of the fibers has an impact on the structures
that can be used for classification.

Manually specifying for each individual fiber to which bundle it belongs is a te-
dious and time-consuming task. Therefore, classification is done using an semi-
automatic approach similar to the ROI fiber tracking technique described in chap-
ter 2. Each bundle is defined by a number of manually defined regions (ROI’s).
Fibers are classified as belonging to a particular bundle if they pass through a
specific number of the ROI’s.

The classification procedure consists of two steps:

1. Manual placement of ROI’s. As with ROI fiber tracking, ROI’s are 2D re-
gions that are placed in areas for which is known that fibers from a particular
structure pass through them. There are two types of ROI’s: AND-ROI’s and
OR-ROI’s. A fiber has to pass through all AND-ROI’s and through at least
one OR-ROI. Figure 4.4 illustrates the different kinds of ROI’s.

2. Classification of individual fibers. Each fiber that intersects the required
number of ROI’s associated with a bundle is classified as belonging to that
particular bundle.
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(a) AND-ROI’s. (b) OR-ROI’s.

Figure 4.4: Illustration of the different kinds of ROI’s.

Fibers that cannot be assigned to a bundle are labelled ”Unclassified” and are not
part of the gold standard. Therefore, they are not used for validation. There are
several reasons why some fibers may be unclassifiable:

• They are part of an anatomical structure that is not part of the gold standard.

• Due to problems with the fiber tracking technique (see section 2.3.2) fibers
can be incomplete or incorrect. Incomplete fibers often do not pass through
the required number of ROI’s, and are therefore automatically excluded. In-
correct fibers might be composed of parts that belong to more than a single
anatomical structure. These ambiguous fibers could pass through all the re-
quired ROI’s and have to be removed manually in some cases. Finally, some
fibers do not correspond to actual anatomical structures at all, because they
are entirely the result of an artifact in the DTI data set.

Note that the complete set of fibers is clustered, but only the classified fibers are
used for validation.

4.3 Validation methods

This section examines various methods for comparing the gold standard with the
results of automated clustering methods. We want to be able to say which dis-
tance measure and which cluster method can be used to partition the fibers into
meaningful and anatomically correct clusters. More specifically, we want to be
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able to measure to which extent clustering methods and proximity measures pro-
duce clusters that match the bundles of the manual classification, according to the
preferences of physicians.

The optimal parameter settings for a clustering algorithm can be found by search-
ing for a clustering that has the highest agreement with the gold standard. Often,
it is not immediately clear which parameter settings give the best results. For ex-
ample, the output of the hierarchical clustering algorithm is a dendrogram. With
a set ofn fibers, the dendrogram can be cut atn places producingn possible
clusterings. Manually searching for the optimal match would take a considerable
amount of time. However, with the aid of a validation method the optimal level of
the dendrogram can be found much more easily.

A validation method must take into account a number of aspects, which are dis-
cussed in section 4.3.1. Next, two kinds of validation methods are examined: Re-
ceiver Operating Characteristic (ROC) curves [4] and external indices [17].

4.3.1 Validation criteria

There are two important aspects, which we call correctness and completeness, that
must be considered when comparing two partitions of items:

Correctness. Fibers belonging to different anatomical structures should not be
clustered together. Correctness can be expressed as a percentage: 100% cor-
rectness means that no fiber is clustered together with any fibers from other
bundles, and 0% correctness means that each fiber is clustered together with
all fibers from other bundles.

Completeness.Fibers belonging to the same anatomical structure should be clus-
tered together. Completeness can also be expressed as a percentage: 100%
completeness means that each fiber is clustered together with all other fibers
from the same bundle, and 0% completeness means that there is no fiber that
is clustered together any fibers from the same bundle.

In practice there is a tradeoff between these two aspects. More correctness means
less completeness, and vice versa. Achieving 100% correctness is not difficult:
put every fiber into a singleton cluster, but this results in a completeness of 0%.
On the other hand, achieving 100% completeness is also not difficult: put every
fiber into the same cluster, but this results in a correctness of 0%. The comparison
methods discussed in this section are all based on the notion that a good clustering
must be both correct and complete with respect to the manual classification.
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Here is an example to illustrate the concepts of correctness and completeness. Fig-
ure 4.5 shows three different partitions of the same set of fibers: the gold standard
and two clusterings. The clustering in figure 4.5b is incorrect, because several
bundles from the gold standard are together in the same cluster. The clustering in
figure 4.5c is incomplete because a bundle from the gold standard is subdivided
into several clusters.

(a) Gold standard. (b) Incorrect clustering. (c) Incomplete clustering.

Figure 4.5: Three different partitions of the same set of fibers.

A question is if a validation method should weight correctness and completeness
equally. Physicians from the MMC indicated (see section 4.4) that they found an
incorrect clustering worse than an incomplete clustering. For instance, consider
the incorrect clustering in figure 4.5b. In this clustering, one of the small bundles
has become almost invisible, because it is clustered together with the large bundle.
On the other hand, in the incomplete clustering (figure 4.5c) all bundles are clearly
visible. Also, if we wish to improve the clusterings manually, then this would be
much easier for the incomplete clustering: we only have to specify which clusters
should be joined. Manually improving the incorrect clustering is much more dif-
ficult, because we have to specify for each fiber to which cluster it belongs. As a
result, we want to be able to specify different weights to the aspects of correctness
and completeness.

Another aspect to consider is the contribution each bundle of the gold standard
has. Should a bundle that consists of a lot of fibers weight more than a bundle
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which consists of a few fibers? For instance, in our gold standard the corpus cal-
losum is a relatively large bundle. In most cases, it is an order of magnitude larger
than some of the smaller bundles, like the cingula or the fornix. But for a global
overview the corpus callosum is not of more interest than either the cingula or the
fornix. In such an overview, large structures tend to dominate visually anyway,
whereas small structures might be more difficult to see. Therefore, we can assume
that each bundle is equally important, regardless of the number of fibers.

4.3.2 Receiver Operator Characteristic curves

Receiver Operating Characteristic (ROC) curves are often used to measure the
performance of medical image analysis techniques [4]. A typical problem in this
context might be the detection of abnormalities in MRI images. For such a prob-
lem, performance refers to the number of correct decisions made by the detection
algorithm. More correct decisions indicates a better algorithm.

The following section defines ROC curves in the context of detection problems.
After that, definitions for ROC curves in the context of fiber clustering are given.

General definitions

The decisions made by a detection algorithm can be categorized as follows (with
respect to the gold standard or the actual clinical state):

True positive (TP). The detection algorithmcorrectlydecides that an abnormal-
ity exists.

True negative(TN). The detection algorithmcorrectlydecides that no abnormal-
ity exits.

False negative(FN). The detection algorithmincorrectlydecides that an abnor-
mality exists.

False positive(FP). The detection algorithmincorrectly decides that no abnor-
mality exists.

This is summarized in the table 4.2.
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Detection algorithm
abnormality

present
abnormality
not present

Gold standard

abnormality
present

true positive false negative

abnormality
not present

false positive true negative

Table 4.2: Categories for the decisions of a detection algorithm [4].

Sensitivity is the frequency of reporting an abnormality in the situation there ac-
tual is one. It is defined in terms of the number of true positives (TPs) and false
negatives (FNs):

sensitivity= TPs

(TPs+FNs)
.

Specificity is the frequency of reporting no abnormality when no abnormality ex-
ists. It is defined in terms of the number of true negatives (TNs) and false positives
(FPs):

specificity= TNs

(TNs+FPs)
.

A ROC curve shows the trade-off between sensitivity and specificity. Typically, a
ROC curve is plotted with the ”true positive” fraction (sensitivity) on the vertical
axis, and the ”false positive” fraction (1-specificity) on the horizontal axis [4].
Figure 4.6 shows an example of a ROC curve. The perfect algorithm has a ROC
curve that reaches the upper left corner of the chart: at this point both sensitivity
and specificity are 1.0. A guessing algorithm has a ROC curve that is the diagonal
from the lower left corner to the upper right corner.

To create a ROC curve one has to identify the parameter in the detection algorithm
that most directly controls the trade-off between sensitivity and specificity [4].
The ROC curve is defined by a number of (specificity, sensitivity) pairs that are
obtained by varying this parameter. The situation is more difficult if there are
several parameters that have an influence on the trade-off.

A common measure for the goodness of a ROC curve is the area under the curve
(AUC) [4]. The AUC for a perfect algorithm is 1.0 and the AUC for a guessing
algorithm is 0.5.
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Figure 4.6: Example of a ROC curve, adapted from Browyer [4].

Fiber clustering definitions

ROC curves are usually applied to situations in which a detection algorithm has
to make a binary choice: either the input is normal or abnormal. However, in the
context of fiber clustering there are multiple bundles that must be ”detected” by
multiple clusters.

The gold standardB and the cluster resultC are both partitions ofn items. The
gold standard consists ofR bundles and the cluster result consists ofSclusters:

B = {b1, b2, . . . , bR},
C = {c1, c2, . . . , cS}.

Let ui be the number of fibers in bundlebi and letv j be the number of fibers in
clusterc j .

Assume that we are only trying to detect fibers from bundlebi . Furthermore, as-
sume that clusterc j is the set of fibers that the clustering algorithm presents as
solution. Now, the complete set of fibers can be categorized as follows:

• TPi j = the number of fibers that belong to both bundlebi as well as cluster
c j .

• FNi j = the number of fibers that belong to bundlebi , but do not belong to
clusterc j .
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• FPi j = the number of fibers that belong to clusterc j , but do not belong to
bundlebi .

• TNi j = the number of fibers that do not belong to clusterc j and do not
belong to bundlebi .

This is summarized in the table 4.3.

in clusterc j not in clusterc j

in bundlebi TPi j FNi j

not in bundlebi FPi j TNi j

Table 4.3: Possible categories for a pair of fibers.

Sensitivity can then be defined for bundlebi and clusterc j :

sensitivity(bi , c j ) =
TPi j

TPi j + FNi j
.

Sensitivity measures the completeness of a bundle and cluster pair: it is the frac-
tion of fibers from bundlebi that are in clusterc j . A value of 1.0 means that all
fibers from bundlebi are in clusterc j . If no fibers from bundlebi are in clusterc j

then sensitivity is 0.0.

Similarly, specificity can be defined for bundlebi and clusterc j :

specificity(bi , c j ) =
TNi j

TNi j + FPi j
.

Specificity measures the correctness of a bundle and cluster pair. Specificity is 1.0
when clusterc j only contains fibers from bundlebi . It is 0.0 if clusterc j only
contains fibers from other bundles.

Now we can define the sensitivity of a bundle by taking the weighted average of
the sensitivity scores of the individual clusters:

bundle-sensitivity(bi ) =
S∑

j=1

TPi j

ui
sensitivity(bi , c j ).

Bundle-sensitivity gives an indication of the completeness of a bundlebi : if there
is a clusterc j that contains all the fibers from bundlebi then bundle-sensitivity is
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1.0. It approaches 0.0 if there is no cluster that contains more than one fiber from
bundlebi , for instance if every fiber is in a singleton cluster.

Similarly, we can the specificity of a bundle by taking the weighted average of the
specificity scores of the individual clusters:

bundle-specificity(bi ) =
S∑

j=1

TPi j

ui
specificity(bi , c j ).

Bundle-specificity gives an indication of the correctness of a bundlebi : it is 1.0 if
all clusters that contain fibers frombi do not contain fibers from other bundles. It
approaches 0.0 if every fiber from bundlebi is together with all fibers from other
bundles, for instance if every fiber is in the same cluster.

We measure the sensitivity and specificity of the complete cluster result by taking
the average of the bundle-sensitivity and bundle-specificity scores:

overall-sensitivity=
R∑

i=1

1

R
bundle-sensitivity(bi ),

overall-specificity=
R∑

i=1

1

R
bundle-specificity(bi ).

An overall sensitivity of 1.0 means that all fibers that belong to the same bundle
are also together in the same cluster. An overall specificity of 1.0 means that all
fibers belonging to different bundles are also in different clusters.

As already mentioned earlier, to create a ROC curve one has to identify a param-
eter in the clustering algorithm that controls the trade-off between sensitivity and
specificity. For instance, for a hierarchical clustering algorithm this parameter is
the level at which the dendrogram is cut. By cutting the dendrogram at various
levels we can obtain different clusterings, varying from a clustering with 1 cluster
to a clustering withn clusters, wheren is the number of fibers. Each clustering
has a different value for sensitivity and specificity. In general, a clustering with too
few clusters has a high sensitivity and a low specificity, whereas a clustering with
too many clusters has a high specificity and a low sensitivity. The best clustering
has both a high sensitivity as well as a high specificity. Such a clustering can be
identified by the ROC curve that comes closest to the upper left corner of a ROC
plot.
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Figure 4.7: Two charts created by comparing the cluster results of a hierarchical
clustering algorithm to the gold standard.

Figure 4.7a shows two different ROC curves for the hierarchical clustering al-
gorithm using different distance measures. The distance measure used for ROC
curveA seems to produce better clusterings than the distance measure used for
ROC curveB. The arrows indicate the position on the ROC curve corresponding
to the clustering that has the most agreement with the gold standard. The AUC’s
for these two examples are 0.88 for ROC curveA and 0.60 for ROC curveB.

For visualization purposes we are not only interested in the global performance
of a clustering algorithm, but also in the quality of each individual clustering.
Therefore, we also assign a single score to each clustering:

ROC score= overall-sensitivity∗ overall-specificity.

This score gives an overall indication of the quality of a clustering with respect to
the gold standard. A score close to 1.0 means that the clustering is both complete
(sensitive) as well as correct (specific). Consequently, a score close to 0.0 means
that either the clustering is incomplete, incorrect or both.

Figure 4.7b shows an example of a plot with the ROC score on the vertical axis
and the number of clusters on the horizontal axis. Again, the arrows indicate the
optimal score.
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In conclusion: ROC curves can be used for measuring the performance of detec-
tion algorithms. We proposed some additional definitions of ROC curves which
make them also usable in the context of fiber cluster validation. However, during
the verification of the validation methods (see section 4.4) it became clear that
they are inappropriate for our purposes. Although there is still room for improve-
ment, we decided to abandon the use of ROC curves altogether. Instead, we started
using external indices which are normally used for the validation of cluster results
with a gold standard.

4.3.3 External indices

An external index is a statistical measure that indicates the agreement between
two partitions of a set of items [17]. In our case the items are fibers, and the
segmentations to be compared are the manual classification, which is external to
the clustering process, and a segmentation produced by a clustering algorithm.
The level of agreement between these two partitions is expressed in a fraction
between 0 and 1: if the two partitions agree perfectly then the index returns a
value of 1, and if the two partitions disagree completely then the index is 0.

Definitions

The manual classificationB and the cluster resultC are both partitions ofn items.
The gold standard consists ofR bundles and the cluster result consists ofS clus-
ters:

B = {b1, b2, . . . , bR},
C = {c1, c2, . . . , cS}.

Table 4.4 shows a contingency table, which is defined as follows: Let cellni j be
the number of fibers that are both in bundlebi as well as in clusterc j . The row
sumui is the number of fibers in bundlebi and the column sumv j is the number
of fibers in clusterc j .

41



Bundle/Cluster c1 c2 . . . cS Sums

b1 n11 n12 . . . n1S u1

b2 n21 n22 . . . n2S u2
...

...
...

...
...

bR nR1 nR2 . . . nRS uR

Sums v1 v2 . . . vS n

Table 4.4: Contingency table.

Let a be the number of pairs of fibers that are both in the same bundle and in the
same cluster.a can be defined in terms of the contingency table:

a =
R∑

i=1

S∑

j=1

(
ni j

2

)
.

Let b be the number of pairs of fibers that are both in the same bundle, but are not
in the same cluster:

b =
R∑

i=1

(
ui

2

)
−

R∑

i=1

S∑

j=1

(
ni j

2

)
.

Let c be the number of pairs of fibers that are not in the same bundle, but are in
the same cluster:

c =
S∑

j=1

(
v j

2

)
−

R∑

i=1

S∑

j=1

(
ni j

2

)
.

Let d be the number of pairs of fibers that are not in the same bundle and not in
the same cluster:

d =
(

n

2

)
− a− b− c.

The number of pairs that are in the same bundle is

m1= a+ b,
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and the number of pairs that are in the same cluster is

m2= a+ c.

The total number of pairs is denoted

M =
(

n

2

)
= a+ b+ c+ d.

This is summarized in contingency table 4.5.

same cluster different cluster

same bundle a b m1

different bundle c d M −m1

m2 M −m2 M

Table 4.5: Categories of pairs of fibers.

The number of pairs on which the gold standard and the cluster result agree is
a+ d. Consequently,b+ c is the number of pairs on which the gold standard and
the cluster result disagree.

Rand Index

The Rand index [17] is defined as the number of ”agreement” pairs divided by the
total number of pairs:

Rand = (a+ d)
/

M.

If the two partitions agree completely then the Rand index returns a value of 1.00.
Although the lower-limit of this index is 0.0, this value is rarely returned with
real data [21]. This is because the Rand index is not corrected for agreement by
chance.
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Adjusted Rand Index

The Adjusted Rand index [15] is the Rand index corrected for chance agreement.
The general form of a statisticS that is corrected for chance is:

S′ = S− E(S)

Max(S)− E(S)
.

In this equation, Max(S) is the upper-limit ofS, andE(S) is the expected value of
S. If the statisticS returns its expected value then the corrected statisticS′ is 0.0,
and if S returns a value of 1.0 thenS′ also returns 1.0.

The expected value of the Rand index is the value that is returned for a configura-
tion of the contingency table in which the bundle and cluster sums are fixed, but
the fibers are randomly assigned to clusters. Assuming a hypergeometric baseline
distribution, the expected values fora andd are [15]:

E (a) = m1m2

M
,

E (d) = (M −m1)(M −m2)

M
.

The expected value of the Rand is then:

E ((a+ d)/M) = E(a)+ E(d)

M

=
m1m2

M + (M−m1)(M−m2)
M

M

= m1m2+ (M −m1)(M −m2)

M2
.

As a result, the Adjusted Rand index is defined as:

AR= ((a+ d)/M)− E ((a+ d)/M)

1− E ((a+ d)/M)

= a− (m1m2)/M

(m1+m2)/2− (m1m2)/M
.

For two partitions that agree perfectly the Adjusted Rand index returns a value of
1.0. For partitions where all agreement can be attributed to chance a value around
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0.0 is returned (the lower bound of this index can be negative, depending on the
partitioning).

Milligan and Cooper [21] compared the Rand, Adjusted Rand and a number of
other external indices and concluded that the Adjusted Rand index is the measure
of choice for cluster validation. However, the Adjusted Rand index has an unde-
sired feature for our purposes: it does not account for bundles that are of widely
varying sizes. That is, the Adjusted Rand index measures agreement on the level
of fibers, not on the level of bundles. As a result, a bundle with a large number of
fibers is weighted more than a bundle with a small number of fibers.

Normalized Adjusted Rand Index

To take into account the requirement that bundles should be weighted equally, we
define the Normalized Adjusted Rand index. The idea is to modify the contingency
table such that each bundle has the same number of fibers. A way to achieve this
is by setting the row sumui of each bundlebi in the contingency table to some
nonnegative valuek and to multiply each entryni j by a factor k

ui
(see table 4.6).

Bundle/Cluster c1 c2 . . . cS Sums

b1 n11
k
u1

n12
k
u1

. . . n1S
k
u1

k

b2 n21
k
u2

n22
k
u2

. . . n2S
k
u2

k
...

...
...

...
...

bR nR1
k

uR
nR2

k
uR

. . . nRS
k

uR
k

Sums v′1 v′2 . . . v′S Rk

Table 4.6: Normalized contingency table.

The column sumv′j is computed by taking the sum of the new cell values:

v′j =
R∑

i=1

k
ni j

ui
.

With this contingency table we can calculate new values fora, b, c, d, m1, m2,
M :
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a′ =
R∑

i=1

S∑

j=1

(
k

ni j
ui

2

)

b′ = R

(
k

2

)
− a′

c′ =
S∑

j=1

(
v′j
2

)
− a′

d′ =
(

Rk

2

)
− a′ − b′ − c′

m1′ = a′ + b′

m2′ = a′ + c′

M ′ =
(

Rk

2

)
.

A remaining question is which value to use fork. Actually, what we would like
to achieve is that the value ofk does not make a difference for the outcome of
the index. However, a simple example shows that this is not the case. Consider
contingency table 4.7.

c1 c2

b1 2 2 4

b2 2 2 4

4 4 8

Table 4.7: Example contingency table.

In this example we have 8 items in 2 bundles. Because the items are evenly dis-
tributed over 2 clusters, we expect a value of 0.0 from the Adjusted Rand index.
Table 4.8 gives the values returned by the Adjusted Rand index for increasing
values ofk.
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k AR

1 −0.500000

10 −0.055556

100 −0.005051

1000 −0.000501

10000 −0.000050

100000 −0.000005

Table 4.8: Values of the Adjusted Rand index.

It seems that for increasing values ofk, we get an Adjusted Rand index that con-
verges to the expected value of 0.0. Indeed, this behavior is confirmed by Milligan
and Cooper [21]. They report that increased cluster sizes result in an Adjusted
Rand index that converges to their expected value.

Therefore, we propose to takek to infinity. The definition of the Normalized Ad-
justed Rand becomes:

NAR= lim
k→∞

a′ − (m1′m2′)/
(Rk

2

)

(m1′ +m2′)/2− (m1′m2′)/
(Rk

2

)

= 2 f − 2Rg

2 f − R f − R2

with

f =
S∑

j=1

(
R∑

i=1

ni j

ui

)2

g =
R∑

i=1

S∑

j=1

n2
i j

u2
i

.

The complete calculation can be found in Appendix A.

Here is an example to illustrate the difference between the Adjusted Rand index
and the Normalized Adjusted Rand index. Given is a set of 22 objects consisting
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of two bundles (see figure 4.8). The objects are clustered in two different ways: in
clustering 1 the large bundle is split into two clusters, and in clustering 2 the small
bundle is split into two clusters.

C1 C2

C3

(a) Clustering 1: Large bundle
split.

C1

C3
C2

(b) Clustering 2: Small bundle
split.

Figure 4.8: Example of the difference between the Adjusted Rand and Normalized
Rand index.

The Adjusted Rand index returns a value of 0.38 for clustering 1, and 0.96 for
clustering 2, which means that clustering 2 is considered much better than clus-
tering 1. Indeed, if we solely look at the number of correct pairs then clustering
2 can be considered better. But if we instead examine the clustering at the level
of bundles then these clusterings can be considered equal: in each clustering one
of the bundles is complete, and one is subdivided. The Normalized Rand index
returns a value of 0.75 for both clusterings, and thus better reflects the equality of
the clusterings.

Weighted Normalized Adjusted Rand index

We propose a final modification to the Adjusted Rand index that enables us to
weight correctness and completeness differently. The indices that are based on
the Rand index assume that the correctness and completeness of a clustering are
equally important, but this may be not necessarily the case in our situation. Ac-
tually, physicians assign different weights to the aspects of correctness and com-
pleteness.

Let us first define the Rand index in terms of the normalized contingency table:
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NR= a′ + d′

a′ + b′ + c′ + d′

= 1− b′

a′ + b′ + c′ + d′
− c′

a′ + b′ + c′ + d′

= 1− b′

M ′
− c′

M ′
.

In this equation the fractionb
′

M ′ indicates the incompleteness of the clustering. The

fraction c′
M ′ indicates the incorrectness of the clustering. We propose the following

definition for a Weighted Normalized Rand indexWNR:

WNR= 1− 2(1− α) b′

M ′
− 2α

c′

M ′
.

If α = 0.5 then correctness and completeness are weighted equally. Ifα is be-
tween 0.0 and 0.5 then completeness is weighted more and ifα is between 0.5
and 1.0 then correctness is weighted more.

The expected value ofWNRbecomes:

E(WNR) = E

(
1− 2(1− α) b′

M ′
− 2α

c′

M ′

)

= 1− 2(1− α)E
(

b′

M ′

)
− 2αE

(
c′

M ′

)

= 1− 2(1− α)m1′(M ′ −m2′)
M ′2

− 2α
m2′(M ′ −m1′)

M ′2

because the expected value ofb is m1(M−m2)
M and the expected value ofc is

m2(M−m1)
M .

Now the Weighted Normalized Rand index (WNAR) is defined as:

WNAR= lim
k→∞

NWR− E(NWR)

1− E(NWR)

= f − Rg

f − αR f − R2− αR2
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with

f =
S∑

j=1

(
R∑

i=1

ni j

ui

)2

g =
R∑

i=1

S∑

j=1

n2
i j

u2
i

.

The complete calculation can be found in Appendix B.

Here is an example to illustrate the WNAR index. Figure 4.9 shows two clus-
terings of a set of 18 objects. Clustering 1 consists of two bundles and can be
considered incomplete. Clustering 2 consists of three bundles and can be consid-
ered incorrect. Table 4.9 shows the values that are obtained from the WNAR index
for both clusterings for different values ofα.

C1 C2

C3

(a) Clustering 1: Incomplete clus-
tering.

C1

C2

(b) Clustering 2: Incorrect clus-
tering.

Figure 4.9: Example to illustrate the WNAR. Color is used to distinguish between
bundles.
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WNAR

α Completeness CorrectnessClustering 1 Clustering 2

0.00 100% 0% 0.60 1.00

0.25 75% 25% 0.67 0.73

0.50 50% 50% 0.75 0.57

0.75 25% 75% 0.86 0.47

1.00 0% 100% 1.00 0.40

Table 4.9: Values of the WNAR index.

4.4 Verification of validation methods

The goal is to identify the best validation method for measuring the agreement
between the cluster results and the gold standard. Our approach is based on the
notion that the optimal validation method assigns scores to clusterings that are
similar to the scores assigned by a physician. For this purpose, two physicians
from the Maxima Medical Center were asked to rank a number of clusterings.
These clusterings were also ranked by the various validation methods discussed in
the last section. The ranking of the physicians was then compared to the rankings
from the validation methods.

Table 4.10 gives the ranking of the physicians and the scores assigned by the
various validation methods. In this table, cc stands for corpus callosum, cr for
corona radiata (both hemispheres), cg for cingula (both hemispheres) and fx for
fornix. A ”++” means that the physicians found that particular aspect very good,
a single ”+” means that they found that aspect good, a ”0” means they found it
average (depending on the context), and a ”−” means that they found this aspect
bad in every situation. Notice that no aspect has been labelled ”very bad”. This
is because it is very difficult for physicians to distinguish between a ”bad” and a
”very bad” aspect; a ”bad” aspect is already something they cannot relate to.

The clusterings can be categorized based on the overall quality:

Good. Clustering A and B were considered good by the physicians. The vali-
dation methods agree with the physicians and return fairly high values, al-
though the ROC scores are a little lower. The reason none of the validation
methods return a 1.0 for these clusterings, is because there were some fibers
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from the smaller bundles that were in different clusters. The physicians did
not mind that these outliers were clustered apart, because they were visually
different.

Average. The physicians found the clusterings C, D, E and F average. All four
clusterings suffered from the same defect: some bundles were subdivided.
Although this might be desirable in some situations, the subdivision was not
part of the gold standard. Therefore, the validation methods found these four
clusterings to be incomplete. The physicians did not mind the subdivision
in some cases, because large bundles like the corpus callosum and corona
radiata can be further subdivided. The physicians found it less desirable that
a small bundle like the cingula was subdivided. The Adjusted Rand index
returns very low scores for clusterings in which the corpus callosum was
subdivided into a number of smaller clusters (clustering C, D and E). The
WNAR index returns higher, more balanced scores and seems to reflect the
opinion of the physicians better, especially if correctness is weighted more
then completeness.

Bad. The clusterings G and H were considered bad by the physicians, because
several bundles from the gold standard were clustered together. The Ad-
justed Rand index returns very high scores for these clusterings because the
largest bundle (the corpus callosum) is complete. The WNAR index with
anα lower than 0.5 also assigns too high values to these clusterings. The
WNAR index withα = 0.5 returns values that are equal to the values for
the average clusterings, and is therefore not able to distinguish between a
clustering that is considered average and a clustering that is considered bad.
However, if correctness is weighted more than completeness then the values
returned by the WNAR index better reflect the opinion of the physicians.

Very bad. Clustering I was considered very bad because it was both incorrect as
well as incomplete. Here the validation methods agree with the opinion of
the physicians and return very low values.

The rank correlation is computed by comparing the ranking of the physicians to
the ranking of the validation methods. Thus, only the ordering is taken into ac-
count assuming that the difference in quality between the clusterings is equal.
Although this is not entirely true, we still use the rank correlation to get an indi-
cation of agreement between the ranking of the physicians and the rankings of the
validation methods.

Table 4.11 gives the average values for the different categories. The WNAR index
with α = 0.75 is the only index that assigns values to the clusterings of different
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categories in a proper way. Both the Adjusted Rand index as well as the ROC
index overestimate the quality of the bad clusterings. The bad clusterings are also
overestimated by the WNAR index if completeness is weighted more than cor-
rectness. The WNAR index withα = 0.50 does not distinguish between average
and bad clusterings. The WNAR index withα = 1.00 assigns too high scores to
the average clusterings, because it completely ignores the completeness aspect.
It is therefore not able to distinguish between a good clustering and an average
clustering. Note that all methods return a low value for the very bad clustering.

WNAR
Overall ROC AR 0.00 0.25 0.50 0.75 1.00

good 0.79 0.91 0.77 0.80 0.85 0.90 0.96
average 0.62 0.38 0.58 0.64 0.71 0.82 0.95
bad 0.82 0.92 0.89 0.81 0.74 0.68 0.64
very bad 0.40 0.01 0.34 0.33 0.32 0.30 0.29

Table 4.11: Values of the validation methods per category.

Figure 4.10 shows the relation between the rank correlation and the weightα of
the WNAR index. It confirms that 0.75 is indeed the optimal weight for validating
the clusterings that were used in this experiment.
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Figure 4.10: Graph showing the relation between the weightα and the rank cor-
relation.

According to these results, the ranking created with WNAR index withα = 0.75
has the most correspondence with the ranking of the physicians. Because this ver-
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ification experiment is too small to be statistically significant, a larger experiment
with a more complete gold standard is necessary to confirm these results. How-
ever, time constraints prevented us from performing such an experiment. Never-
theless, based on this experiment, the WNAR index withα = 0.75 seems to be the
most suitable validation method available and is therefore used in the next chapter
to validate the cluster results.
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Chapter 5

Results

This chapter presents the results of this study. It shows clusterings of fibers that
can be obtained by using the cluster methods and proximity measures described in
chapter 3. Furthermore, it demonstrates how the quality of these cluster results can
be assessed by using the validation techniques described in the previous chapter.

5.1 Experimental setup

All visualizations in this chapter are created with the DTI Tool originally devel-
oped by Berenschot [2] in collaboration with the Maxima Medical Center (MMC).
This tool visualizes DTI data in a variety of ways, one of which is fiber tracking.
To allow for the classification and clustering of fibers, we extended the DTI Tool.
See appendix C for a more detailed description of our modifications.

For the experiments, three different DTI data sets from healthy adults were used.
Each data set has a resolution of 128× 128× 30 with a voxel size of 1.8×
1.8× 3.0mm. For each data set we defined a gold standard which consisted of
the structures described in section 4.2. The gold standard of the first data set was
verified by physicians. The data sets were selected at random: the only selection
criterium was that the structures of the gold standard could be found using fiber
tracking.

The fiber tracking algorithm has a considerable number of parameters. Table 5.1
identifies the parameter settings that we have used to create fibers. It lies outside
the scope of this project to study how each of these parameters affects the fibers
produced by the fiber tracking algorithm. Intuitively we can say that the minimum
length and the minimum anisotropy have a significant influence on the outcome of
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the fiber tracking algorithm, and consequently, on the performance of the cluster-
ing methods. In general, lowering the minimum length produces shorter fibers for
which identification is more difficult; lowering the minimum anisotropy reduces
the separation between the various white matter bundles. Thus, a more challeng-
ing set of fibers can be created by choosing a lower minimum length and a lower
minimum anisotropy.

Parameter Value

Seed distance 1.0 mm
Anisotropy index Cl
Minimum anisotropy 0.20
Minimum length 20 mm
Maximum length 500 mm
Maximum angle 100
Step length 0.10 voxel

Table 5.1: Parameters of the fiber tracking algorithm.

However, for our purposes the configuration given above is sufficient: fiber track-
ing with seeding throughout the whole volume gives us a set of 3500-5000 fibers,
which can be clustered in approximately 15-20 minutes, depending on the cho-
sen proximity measure and clustering method. Furthermore, each bundle of the
manual classification contains at least 10 fibers with these settings.

5.1.1 Proximity measures

It is not clear from literature which of the available proximity measures described
in section 3.3 produces the best results. As a starting point, we implemented the
following four measures:

• Closest point distance,

• Mean of closest points distance,

• Hausdorff distance,

• End points distance.
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We selected these measures primarily for practical reasons: they are straightfor-
ward to implement and require no extra parameters. However, if these four mea-
sures prove to be insufficient, more complex measures could be used in future
experiments.

5.2 Hierarchical clustering results

The first method that we have used for fiber clustering is the hierarchical clustering
algorithm, which is a well established method that has been applied in a large
number of contexts. It has been used for fiber clustering by Zhang and Laidlaw
[27, 26, 29].

Hierarchical clustering is a very flexible clustering method: different results can
be obtained by varying the way clusters are merged. Three hierarchical varia-
tions were implemented: single-link (HSL), complete-link (HCL) and weighted-
average (HWA). Note that in contrast with the single-link and complete-link meth-
ods, the weighted-average method has not yet been used in the context of fiber
clustering. See section 3.4.1 for a more detailed description of these methods.

The following section shows the results for the hierarchical clustering methods
applied to a single data set. After that, the results for multiple data sets are pre-
sented.

5.2.1 Single data set

Hierarchical clustering methods have a single parameter that controls the output
of the algorithm: the level at which the dendrogram is cut. A graph can be plot-
ted by comparing the clustering at each level of the dendrogram to the manual
classification. Figure 5.1 shows the graphs for the four proximity measures. Each
graph is plotted with the number of clustersn on the horizontal axis and the value
of the WNAR index withα = 0.75 on the vertical axis. Each graph contains the
output from the three different hierarchical variants: single-link (thick blue curve),
complete-link (thin red curve) and weighted-average (thin black curve).
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Figure 5.1: Graphs of the hierarchical clustering methods.
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(a) Clustering A: Single-link method
combined with the mean of closest
points distance.

(b) Clustering B: Single-link method
combined with the closest point dis-
tance.

(c) Clustering C: Complete-link
method combined with the closest
point distance.

(d) Clustering D: Weighted-average
method combined with the end
points distance.

Figure 5.2: Hierarchical clusterings of the first data set.
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Table 5.2 gives the maximum values obtained from the WNAR index for each
combination of proximity measure and hierarchical clustering method. The mean
of closest points measure combined with the single-link method produces a clus-
tering that has the most correspondence with the gold standard. This clustering is
obtained by cutting the dendrogram at the level of 141 clusters (see figure 5.2a).
The worst optimal clustering has 933 clusters and is also created with the single-
link method, but now combined with the closest point measure (see figure 5.2b).
The value of the WNAR index for this clustering is 0.46. Noticeable about this
combination of clustering method and proximity measure is the high number of
clusters needed to get to a clustering that is somewhat reasonable. Figure 5.2c
shows the clustering obtained by using the closest point measure combined with
the complete-link method. Figure 5.2d shows the clustering obtained by using the
end point distance with weighted-average method.

Proximity measure HSL HWA HCL

WNAR n WNAR n WNAR n

Mean of closest points 0.92 141 0.81 110 0.82 125
Closest point 0.46 933 0.79 120 0.77 77
Hausdorff 0.84 178 0.77 107 0.78 107
End points 0.87 175 0.87 44 0.67 95

Table 5.2: Results of the hierarchical clustering algorithm for the first data set.

5.2.2 Multiple data sets

Table 5.3 gives the optimal values for the WNAR index for the other two data
sets. Additionally, the average of the optimal values for all three data sets is given.
Figure 5.3a shows the optimal clustering for the second data set, and figure 5.3b
shows the optimal clustering for the third data set. Both clusterings are created
with the single-link method combined with the mean of closest points measure.
The value of the WNAR index for these clusterings is 0.99 and 0.95 for the second
and third data set, respectively.
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Proximity Data set 2 Data set 3 Average
measure HSL HWA HCL HSL HWA HCL HSL HWA HCL

Mean of closest 0.99 0.90 0.87 0.95 0.86 0.77 0.95 0.86 0.82
Closest point 0.50 0.82 0.79 0.50 0.76 0.69 0.49 0.79 0.75
Hausdorff 0.85 0.82 0.85 0.91 0.77 0.66 0.89 0.80 0.72
End points 0.88 0.82 0.77 0.93 0.72 0.74 0.87 0.79 0.76

Table 5.3: Results of the hierarchical clustering algorithm for multiple data sets.

(a) Optimal clustering for the second
data set: Created with the single-link
method combined with the mean of
closest points distance.

(b) Optimal clustering for the third
data set: Created with single-link
method combined with the mean of
closest points distance.

Figure 5.3: Optimal hierarchical clusterings for the second and third data set.

For three of four measures, the single-link performs better than the weighted-
average and complete-link methods. These higher values can be explained by the
fact that the single-link method manages to keep the fibers from the larger bundles
together. This is largely due to the chaining effect, which is a known characteristic
of the single-link method [18]. Even the fibers from a large, elongated structure
like the corpus callosum are almost entirely in a single cluster (the red cluster in
figures 5.2a, 5.3a and 5.3b).

The chaining effect of the single-link method becomes a disadvantage when using
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the closest point measure, which can be seen as very ”optimistic”: two fibers only
need to have two neighboring points to be considered close. Furthermore, the
single-link method can also be seen as very ”optimistic”: two clusters only need
to have two neighboring fibers to be considered close. In many cases, this results
is an overestimation of the similarity between clusters.

The complete-link method has the opposite characteristic of the single-link
method: it tries to make globular clusters, even when the data contains elongated
structures [18]. This characteristic explains why a large structure like the corpus
callosum is subdivided into a number of approximately equally sized clusters. In
general, this reduces the completeness of a complete-link clustering, which ex-
plains the lower values of the WNAR index. Due to the requirement that bundles
should be weighed equally, the values for the complete-link method are not that
much lower than for the single-link method; the normalization of the bundles done
by the WNAR index works to the advantage of methods that tend to break up large
bundles.

The weighted-average method seems to fall in between the single-link and
complete-link methods. The elongated structures are still subdivided, but the clus-
ters tend to be less globular than for the complete-link method.

Concerning the proximity measures, the mean of closest points measure achieves
the highest values for the WNAR index, although the difference with the end
points distance and the Hausdorff distance is not very large. As mentioned above,
the closest point distance performs poorly with the single-link method, but per-
forms reasonably well with the complete-link and weighted-average methods.
This is probably because the conservative nature of these methods counterbal-
ances the overly optimistic nature of the closest point measure.

5.3 Shared nearest neighbor clustering results

The second method that we have used for fiber clustering is the shared nearest
neighbor algorithm described in section 3.4.5. In contrast with hierarchical clus-
tering, the shared nearest neighbor algorithm has not yet been used in the context
of fiber clustering.

This section shows the results for the shared nearest neighbor algorithm. First, the
results for a single data set are given, then the results for multiple data sets are
presented.
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5.3.1 Single data set

The shared nearest neighbor algorithm has two parameters: the number of neigh-
bors and the edge threshold. In general, an increased edge threshold results in an
increased number of clusters. By fixing the number of neighbors and varying the
edge threshold from 0 to a certain maximum value, every possible clustering for
that particular number of neighbors can be obtained.

Figure 5.4 shows density plots for the four proximity measures. Each plot has the
number of neighbors on the x-axis, the number of clusters on the y-axis and the
value of the WNAR index represented as a grey value: black corresponds to a
value of 0 and white to a value of 1. The arrows indicate the optimal clusterings
which are shown in figure 5.5.

A number of observations can be made about the density plots. First of all, the
highest values are found around the 50 to 250 clusters. Clusterings with less than
50 clusters tend to be incorrect, and clusterings with more than 250 clusters tend
to be incomplete. This can be seen in the plots: the grey level starts black for a
low number of clusters and then increases rapidly to the highest grey level be-
fore gradually fading to black again. This is actually similar to the graphs of the
hierarchical clustering methods, in which the curve rises substantially near the be-
ginning, reaches an optimum, and then gradually decreases again. The graph in
figure 5.6 illustrates this: it is obtained with the shared nearest neighbor algorithm
in combination with the mean of closest points measure. It has the number of clus-
ters on the horizontal axis and the value of the WNAR index withα = 0.75 on
the vertical axis. The number of neighbors has been set to 23 (black curve) and 85
(red curve). As can be observed, this graph looks similar to the graphs in figure
5.1.

Secondly, in the plots of the mean of closest points measure, the end points mea-
sure and the Hausdorff measure the highest grey levels appear between the 10 and
25 neighbors. For the closest point distance on the other hand, the highest grey
levels appear around the 50 neighbors.
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Figure 5.4: Density plots of the shared nearest neighbor algorithm results.
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(a) Clustering A: Created using
the mean of closest points mea-
sure.

(b) Clustering B: Created using
the closest point measure.

(c) Clustering C: Created using
the Hausdorff measure.

(d) Clustering D: Created using
the end points measure.

Figure 5.5: Shared nearest neighbor clusterings.
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Figure 5.6: Graph for the mean of closest of points measure in combination with
the shared nearest neighbor algorithm with 23 neighbors (black curve) and 85
neighbors (red curve).

Table 5.4 shows the shared nearest neighbor results for a single data set. For each
proximity measure the highest reached WNAR index is given. Also, the number
of neighborsk, the edge thresholdτ and the number of clustersn for the optimal
clustering are given.

Proximity measure WNAR k τ n

Mean of closest points 0.93 23 2667 145
Closest point 0.82 54 42,065 320
Hausdorff 0.87 18 863 100
End points 0.92 15 329 79

Table 5.4: Results of the shared nearest neighbors algorithm for the first data set.

The mean of closest points distance achieves the highest value for the WNAR
index. The clustering created using the end points measure is almost as good ac-
cording to the WNAR index. Noteworthy is the high number of neighbors for the
optimal clustering of the closest point measure. The high number of clusters in-
dicates that it is more incomplete than the other optimal clusterings of the other
measures. This is visually confirmed in figure 5.5b in which can be seen that the
corpus callosum is subdivided, while it is complete in other three clusterings (the
large red cluster in figures 5.5a, 5.5c and 5.5d).
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5.3.2 Multiple data sets

Table 5.5 shows results for all three data sets. For each proximity measure the
highest value for the WNAR index is given. Additionally, the number of neighbors
k and the edge thresholdτ with which the best clustering was obtained is also
shown. Figure 5.7 shows the optimal clusterings of the mean of closest points
measure.

Proximity Data set 1 Data set 2 Data set 3 Avg
measure WNAR WNAR k τ WNAR k τ WNAR

Mean of closest 0.93 1.00 9 0 0.91 79 136,748 0.95
Closest points 0.82 0.83 89 203,631 0.86 35 8,994 0.84
Hausdorff 0.87 0.99 16 495 0.89 88 177,407 0.92
End points 0.92 0.97 10 9 0.92 88 183,567 0.94

Table 5.5: Results of the shared nearest neighbors algorithm for multiple data sets.

(a) Clustering of the second data set. (b) Clustering of the third data set.

Figure 5.7: Shared nearest neighbor clusterings created with the mean of closest
points distance for the second and third data set.
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The shared nearest neighbor algorithm seems to be able to find both the small and
the large bundles of the manual classification. Indeed, a visual inspection reveals
that the clusterings produced by the shared nearest neighbor algorithm are very
similar to hierarchical single-link clusterings. This is reflected in the scores of the
WNAR index which are also similar.

The choice of proximity measure seems to have less influence, although the clus-
terings produced with the closest point distance are given somewhat lower values
by the WNAR index.

The difficulty with the shared nearest neighbor algorithm is choosing appropriate
values for the number of neighbors and the edge threshold. Noticeable is the ap-
parent lack of a relation between the number of neighbors and the optimal value
for the WNAR index. For instance, using the mean of closest points measure, the
optimal clustering for the first data set is found with 23 neighbors, for the second
data set with 9 neighbors and for the third data set with 79 neighbors.
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Figure 5.8: Optimal WNAR values for the shared nearest neighbor algorithm.

The graph in figure 5.8 shows how the maximum value of the WNAR index fluc-
tuates. This graph has been created using the mean of closest points measure. It
has the number of neighbors on the horizontal axis and the maximum value of the
WNAR index for a specific number of neighbors on the vertical axis. The dotted
lines indicate for each data set at what number of neighbors the optimal value is
first achieved. As can be seen, there is no number of neighbors at which all data
sets achieve their optimal value of the WNAR index. If we would have to pick a
single number of neighbors for all three data sets, then the best choice seems to be

69



85 neighbors, at which the maximum values for the WNAR index are 0.89, 0.98
and 0.91, for the first, second and third data set, respectively.

A related problem is setting the edge threshold. When a manual classification is
available, an exhaustive search can find the optimal edge threshold for a partic-
ular number of neighbors. Without such an aid however, the number of possible
values for the edge threshold is very large, especially if the number of neighbors
is very high. A possibility would be to set the desired number of clusters instead
of the edge threshold. The algorithm could then search for an edge threshold that
produces the clustering with the specified number of clusters, although it is not
guaranteed that this clustering exists.

5.4 Evaluation

Table 5.6 gives for each data set the average WNAR values for the optimal clus-
terings. For the hierarchical clustering algorithm, all optimal clusterings were ob-
tained with the single-link method combined with mean of closest point measure.
For the shared nearest neighbor algorithm the optimal clusterings were obtained
with the end points measure and the mean of closest point measure. So, the mean
of closest point distance seems to be the best choice for measuring proximity be-
tween fibers, although the difference with the end points and Hausdorff distance
is small, in particular when combined with the shared nearest neighbor algorithm.
The closest point distance performs less well, especially in combination with the
single-link method.

Proximity measure HSL HWA HCL SNN

Mean of closest points 0.95 0.86 0.82 0.95
Closest point 0.49 0.79 0.75 0.84
Hausdorff 0.89 0.80 0.72 0.92
End points 0.87 0.79 0.76 0.94

Table 5.6: Summary of the results.

As for clustering methods, the difference between the hierarchical single-link
method and shared nearest neighbor method is minimal. A larger experiment with
more data sets is necessary to see if there is really no difference in clustering
quality between these two algorithms. If we look from a practical point of view
then the hierarchical clustering algorithm seems somewhat more user friendly for
our purposes: specifying the number of clusters is more intuitive than setting the
number of neighbors and the edge threshold.
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The results of the experiments presented in this chapter can be seen as a demon-
stration of the techniques described in the previous chapters. Due to time con-
straints, we had to restrict ourselves to a limited number of data sets, proximity
measures and clustering methods.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This study has presented techniques for the clustering of brain fibers. The goal
was to overcome the visual cluttering that occurred when doing fiber tracking
with seeding throughout the whole volume.

We identify the following four contributions:

• The first contribution is the application of the shared nearest neighbor clus-
tering algorithm in the context of fiber clustering. We used this algorithm
because it can find clusters of different sizes and shapes in data that contains
noise and outliers.

• The second contribution is a framework to evaluate fiber clustering meth-
ods. Our approach is based on the manual classification of the fibers in a
number of bundles that correspond to anatomical structures. By comparing
the manually defined bundles to the automatically created clusters we can
get an estimation of the cluster quality.

• The third contribution is a new index to validate the fiber clusters based
on the preferences of physicians. We created the WNAR index after we
found that the indices available in literature are not suited to the task of fiber
clustering. In particular, the existing indices do not address the following:

– Bundles of the manual classification should be weighed equally, re-
gardless of the number of fibers. A bundle may contain few fibers, but
this does not mean that it is less important. On the contrary, because
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small bundles are often concealed by large bundles, it is essential that
these small bundles are visually different.

– Physicians prefer correctness above completeness, because a correct
clustering is visually more appealing than a complete clustering. In an
incorrect clustering, fibers belonging to different anatomical bundles
are clustered together, which makes it difficult to distinguish between
bundles.

• The final contribution is the comparison of different clustering methods with
the new index. We demonstrated how the validation and clustering tech-
niques can be used on DTI data sets of human brains. We compared the
results of the shared nearest neighbor algorithm to results of the hierarchi-
cal clustering method used by another research group. Both algorithms per-
formed equally well on the data sets that we selected for the experiments,
but the shared nearest neighbor algorithm has multiple parameters which
makes finding the optimal clustering difficult. Furthermore, we found that
the mean of closest points distance measure gives a good approximation of
the distance between a pair of fibers.

6.2 Future work

During the course of this project we discovered a number of areas which deserve
further investigation. Here is a list of future research:

• Increase the number of bundles that are included in the manual classifica-
tion. The current manual classification only contains six anatomical struc-
tures, which results in a large number of unclassified fibers that cannot be
used for validation. More bundles means that more fibers can be classified.
A more complete manual classification enables a more accurate assessment
of the cluster results.

• Examine the effect of the fiber tracking parameters. These parameters de-
termine to a large extent the quantity and quality of the produced fibers. For
instance, a more challenging set of fibers can be created by choosing a lower
minimum anisotropy.

• Conduct a larger experiment with more data sets. Our experiment has been
conducted on a limited number of data sets, and can therefore not give
definitive answers.
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• Cluster fibers from the heart or other muscle tissues. It would be interesting
to examine how the cluster methods perform on non-brain fibers.

• Develop more sophisticated proximity measures. Currently, only the fiber
point coordinates are used and the information of the original tensor is
largely ignored. For instance, the directions of the eigenvectors could also
be used to get an indication of similarity.
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Appendix A

Derivation of the normalized
adjusted rand index

This appendix shows the derivation of the Normalized Adjusted Rand (NAR) in-
dex.

We start with the definition of the Adjusted Rand index in terms of the normalized
contingency table:
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Next, we write out the binomials and simplify the result to the form:

kx+ k2x2+ k3x3

ky+ k2y2+ k3y3

with
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y1 = R−
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R∑
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ni j
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y2 = −R− R2+ (2− R)
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(
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i=1

ni j

ui

)2

.

Now, if we takek to infinity only the x3
y3

term remains:

−2
S∑
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(
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i=1

ni j
ui

)2

+ 2R
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S∑

j=1

(
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ni j
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)2
.

This can be rewritten as:

2 f − 2Rg

(−2+ R) f + R2

with
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ui

)2
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n2
i j

u2
i

.
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Appendix B

Derivation of the weighted
normalized adjusted rand index

This appendix shows the derivation of the Weighted Normalized Adjusted Rand
(WNAR) index.

The WNAR index is the Weighted Normalized Rand (WNR) index adjusted for
chance agreement:

WNR− E(WNR)

1− E(WNR)
.

First, we substituteWNRandE(WNR):

(
1− b′

M ′ − c′
M ′

)
−
(
1− 2(1− α)m1′(M ′−m2′)

M ′2 − 2αm2′(M ′−m1′)
M ′2

)

1−
(
1− 2(1− α)m1′(M ′−m2′)

M ′2 − 2αm2′(M ′−m1′)
M ′2

) .

Then, we substituteb′, c′, m1′, m2′ and M ′ and write out the binomials of the
result:

−2

(
− (−1+ k)
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1
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kni j
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.
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Next, we simplify the last equation to the form:

kx+ k2x2+ k3x3

ky+ k2y2+ k3y3

with
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Now, if we takek to infinity only the x3
y3

term remains:
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This can be rewritten as:
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f − Rg

(1− Rα) f − R2+ R2α

with

f =
S∑

j=1

(
R∑

i=1

ni j

ui

)2

g =
R∑

i=1

S∑

j=1

n2
i j
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Appendix C

Implementation

This appendix shows the design of the most important classes that were imple-
mented in the DTI Tool.

The DTI Tool was originally created by Berenschot [2] using the visualization
toolkit (VTK). VTK is an open source library of C++ classes that can be used to
visualize all kinds of data. Data is processed by building a pipeline of filters that
create or modify the data.

The filter responsible for creating fibers isCStreamline1, which is a subclass of
vtkPolyDataToPolyDataFilter, which in turn is a standard VTK class for processing
polygon data. Each fiber is represented as an ordered list of 3D points. Figure C.1
shows how the fibers, originating from theCStreamline class, flow through the
new filters that were built for classification, clustering and validation. Figure C.2
shows the inheritance diagram of these new classes. Note that theCStreamline
class was already part of the DTI Tool.

Here is an description of the classes that we added to the DTI Tool:

• CClassifyFiberFilter classifies the fibers according through which regions
(ROI’s) they pass. The regions, which are represented as 2D polygons, are
loaded from a file. The bundle id’s are added as attributes to the fibers.

• CClusterFilter clusters the fibers into groups. A distance matrix is built by
using a certain proximity function.CClusterFilter is abstract; subclasses pro-
vide the actual implementations of the clustering algorithms:

– CHierarchicalClusterFilter implements the hierarchical clustering al-
gorithm. The number of clusters is passed as a parameter.

1In VTK, fibers are called streamlines.
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CStreamline

CClassifyFiberFilter

CClusterFilter CClusterResultFilter

CValidationFilter

screen

file
fibers

classified

fibers
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validation

result

clustered

fibers

Figure C.1: Dataflow diagram.

– CSharedNearestNeighborClusterFilter implements the shared nearest
neighbors algorithm. The parameters are the number of neighbors and
the edge threshold.

• CClusterResultFilter receives the fiber clusters and prepares them for visu-
alization. Preparation includes selection and coloring using a look-up-table.
Individual clusters can be selected based on properties such as size or cluster
id.

• CValidationFilter class compares two partitions of fibers. Subclasses provide
an actual implementation of the validation algorithms:

– CExternalIndexFilter calculates the values of the various external in-
dices.

– CROCCurveFilter produces output from which ROC Curves can be
drawn.
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vtkPolyDataToPolyDataFilter

CClusterFilter

CHierarchicalClusterFilter CSharedNearestNeighborClusterFilter

CClassifyFiberFilter CClusterResultFilterCStreamline CValidationFilter

CROCCurveFilter CExternalIndexFilter

Figure C.2: Inheritance diagrams.
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