3,204 research outputs found

    Eccentric disc instability in stellar discs formed from inspiraling gas clouds in the Galactic Centre

    Full text link
    The inspiral of a turbulent molecular cloud in the Galactic Centre may result in the formation of a small, dense and moderately eccentric gas disc around the supermassive black hole (SMBH). Such a disc is unstable to fragmentation and may lead to the formation of young massive stars in the central parsec of the Galaxy. Here we perform high-accuracy direct summation N-body simulations of a ring of massive stars (with initial semi-major axes 0.1 < a/pc < 0.4 and eccentricities 0.2 < e < 0.4), subject to the potential of the SMBH, a stellar cusp, and the parent gas disc, to study how the orbital elements of the ring evolve in time. The initial conditions for the stellar ring are drawn from the results of previous simulations of molecular cloud infall and disruption in the SMBH potential. While semi-major axes do not evolve significantly, the distribution of eccentricities spreads out very fast (~1 Myr) as a consequence of cusp precession. In particular, stellar orbits with initial eccentricity e>0.3 (e<0.3) tend to become even more (less) eccentric, resulting in a bimodal eccentricity distribution. The distribution is qualitatively consistent with that of the massive stars observed in the Galactic Centre's clockwise disc.Comment: 7 pages, 8 figures, accepted for publication in MNRA

    Are ring galaxies the ancestors of giant low surface brightness galaxies?

    Full text link
    Giant low surface brightness galaxies (GLSBs), such as Malin 1, have unusually large and flat discs. Their formation is a puzzle for cosmological simulations in the cold dark matter scenario. We suggest that GLSBs might be the final product of the dynamical evolution of collisional ring galaxies. In fact, our simulations show that, approximately 0.5-1.5 Gyr after the collision which lead to the formation of a ring galaxy, the ring keeps expanding and fades, while the disc becomes very large (~100 kpc) and flat. At this stage, our simulated galaxies match many properties of GLSBs (surface brightness profile, morphology, HI spectrum and rotation curve).Comment: 4 pages, 6 figures, Astronomische Nachrichten, Vol.329, p.948, proceeding of "Galactic & Stellar Dynamics in the era of high resolution surveys", Strasbourg, France, March 16-20 200

    Lopsided galaxies: the case of NGC 891

    Full text link
    It has been known for a long time that a large fraction of disc galaxies are lopsided. We simulate three different mechanisms that can induce lopsidedness: flyby interactions, gas accretion from cosmological filaments and ram pressure from the intergalactic medium. Comparing the morphologies, HI spectrum, kinematics and m=1 Fourier components, we find that all of these mechanisms can induce lopsidedness in galaxies, although in different degrees and with observable consequences. The timescale over which lopsidedness persists suggests that flybys can contribute to ~20 per cent of lopsided galaxies. We focus our detailed comparison on the case of NGC 891, a lopsided, edge-on galaxy with a nearby companion (UGC 1807). We find that the main properties of NGC 891 (morphology, HI spectrum, rotation curve, existence of a gaseous filament pointing towards UGC 1807) favour a flyby event for the origin of lopsidedness in this galaxy.Comment: 12 pages, 12 figures, MNRAS, accepte

    Lopsided galaxies: the case of NGC 891

    Get PDF
    It has been known for a long time that a large fraction of disc galaxies are lopsided. We simulate three different mechanisms that can induce lopsidedness: flyby interactions, gas accretion from cosmological filaments and ram pressure from the intergalactic medium. Comparing the morphologies, H i spectrum, kinematics and m= 1 Fourier components, we find that all of these mechanisms can induce lopsidedness in galaxies, although in different degrees and with observable consequences. The time-scale over which lopsidedness persists suggests that flybys can contribute to ∼20 per cent of lopsided galaxies. We focus our detailed comparison on the case of NGC 891, a lopsided, edge-on galaxy with a nearby companion (UGC 1807). We find that the main properties of NGC 891 (morphology, H i spectrum, rotation curve, existence of a gaseous filament pointing towards UGC 1807) favour a flyby event for the origin of lopsidedness in this galax

    On the Dynamical Capture of a MSP by an IMBH in a Globular Cluster

    Get PDF
    Globular clusters (GCs) are rich of millisecond pulsars (MSPs) and might also host single or binary intermediate-mass black holes (IMBHs). We simulate 3- and 4-body encounters in order to test the possibility that an IMBH captures a MSP. The newly formed system could be revealed from the timing signal of the MSP, providing an unambiguous measure of the BH mass. In current surveys, the number of expected [IMBH,MSP] binaries in the Milky Way is ~0.1. If next-generation radio telescopes (e.g. SKA) will detect ~10 times more MSPs in GCs, we expect to observe at least one [IMBH,MSP] binar

    Millisecond pulsars around intermediate-mass black holes in globular clusters

    Get PDF
    Globular clusters (GCs) are expected to be breeding grounds for the formation of single or binary intermediate-mass black holes (IMBHs) of ≳100 M⊙, but a clear signature of their existence is still missing. In this context, we study the process of dynamical capture of a millisecond pulsar (MSP) by a single or binary IMBH, simulating various types of single-binary and binary-binary encounters. It is found that [IMBH, MSP] binaries form over cosmic time in a cluster, at rates ≲10−11 yr−1, via encounters of wide-orbit binary MSPs off the single IMBH, and at a lower pace, via interactions of (binary or single) MSPs with the IMBH orbited by a typical cluster star. The formation of an [IMBH, MSP] system is strongly inhibited if the IMBH is orbited by a stellar mass black hole (BH): in this case, the only viable path is through the formation of a rare stable hierarchical triplet with the MSP orbiting exterior to the [IMBH, BH] binary. The [IMBH, MSP] binaries that form are relatively short-lived, ≲108−109 yr, since their orbits decay via emission of gravitational waves. The detection of an [IMBH, MSP] system has a low probability of occurrence, when inferred from the current sample of MSPs in GCs. If next-generation radio telescopes, like Square Kilometre Array (SKA), will detect an order of magnitude larger population of MSP in GCs, at least one [IMBH, MSP] is expected. Therefore, a complete search for low-luminosity MSPs in the GCs of the Milky Way with SKA will have the potential of testing the hypothesis that IMBHs of the order of 100 M⊙ are commonly hosted in GCs. The discovery will unambiguously prove that BHs exist in the still uncharted interval of masses around ≳100 M

    Dynamical age differences among coeval star clusters as revealed by blue stragglers

    Full text link
    Globular star clusters that formed at the same cosmic time may have evolved rather differently from a dynamical point of view (because that evolution depends on the internal environment) through a variety of processes that tend progressively to segregate stars more massive than the average towards the cluster centre. Therefore clusters with the same chronological age may have reached quite different stages of their dynamical history (that is, they may have different dynamical ages). Blue straggler stars have masses greater than those at the turn-off point on the main sequence and therefore must be the result of either a collision or a mass-transfer event. Because they are among the most massive and luminous objects in old clusters, they can be used as test particles with which to probe dynamical evolution. Here we report that globular clusters can be grouped into a few distinct families on the basis of the radial distribution of blue stragglers. This grouping corresponds well to an effective ranking of the dynamical stage reached by stellar systems, thereby permitting a direct measure of the cluster dynamical age purely from observed properties.Comment: Published on the 20 December 2012 issue of Natur

    A Panchromatic Study of the Globular Cluster NGC 1904. I: The Blue Straggler Population

    Full text link
    By combining high-resolution (HST-WFPC2) and wide-field ground based (2.2m ESO-WFI) and space (GALEX) observations, we have collected a multi-wavelength photometric data base (ranging from the far UV to the near infrared) of the galactic globular cluster NGC1904 (M79). The sample covers the entire cluster extension, from the very central regions up to the tidal radius. In the present paper such a data set is used to study the BSS population and its radial distribution. A total number of 39 bright (m218≤19.5m_{218}\le 19.5) BSS has been detected, and they have been found to be highly segregated in the cluster core. No significant upturn in the BSS frequency has been observed in the outskirts of NGC 1904, in contrast to other clusters (M 3, 47 Tuc, NGC 6752, M 5) studied with the same technique. Such evidences, coupled with the large radius of avoidance estimated for NGC 1904 (ravoid∼30r_{avoid}\sim 30 core radii), indicate that the vast majority of the cluster heavy stars (binaries) has already sunk to the core. Accordingly, extensive dynamical simulations suggest that BSS formed by mass transfer activity in primordial binaries evolving in isolation in the cluster outskirts represent only a negligible (0--10%) fraction of the overall population.Comment: ApJ accepte

    Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    Full text link
    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.Comment: 12 page
    • …
    corecore