1,416 research outputs found

    Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis

    Get PDF
    Miniaturized gas chromatography (GC) systems can provide fast, quantitative analysis of chemical vapors in an ultrasmall package. We describe a chemical sensor technology based on resonant nanoelectromechanical systems (NEMS) mass detectors that provides the speed, sensitivity, specificity, and size required by the microscale GC paradigm. Such NEMS sensors have demonstrated detection of subparts per billion (ppb) concentrations of a phosphonate analyte. By combining two channels of NEMS detection with an ultrafast GC front-end, chromatographic analysis of 13 chemicals was performed within a 5 s time window

    Lessons Learned: Using the Caprini Risk Assessment Model to Provide Safe and Efficacious Thromboprophylaxis Following Hip and Knee Arthroplasty

    Get PDF
    © The Author(s) 2020. Two of the more common potential complications after arthroplasty are venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and pulmonary embolus (PE), and excess bleeding. Appropriate chemoprophylaxis choices are essential to prevent some of these adverse events and from exacerbating others. Risk stratification to prescribe safe and effective medications in the prevention of postoperative VTE has shown benefit in this regard. The Department of Orthopaedic Surgery at Syosset Hospital/Northwell Health, which performs over 1200 arthroplasties annually, has validated and is using the 2013 version of the Caprini Risk Assessment Model (RAM) to stratify each patient for risk of postoperative VTE. This tool results in a culling of information, past and present, personal and familial, that provides a truly thorough evaluation of the patient’s risk for postoperative VTE. The Caprini score then guides the medication choices for thromboprophylaxis. The Caprini score is only valuable if the data is properly collected, and we have learned numerous lessons after applying it for 18 months. Risk stratification requires practice and experience to achieve expertise in perioperative patient evaluation. Having access to pertinent patient information, while gaining proficiency in completing the Caprini RAM, is vital to its efficacy. Ongoing, real time analyses of patient outcomes, with subsequent change in process, is key to improving patient care

    Magnetic structure of Yb2Pt2Pb: Ising moments on the Shastry-Sutherland lattice.

    Get PDF
    Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form two interpenetrating planar sublattices of orthogonal dimers, a geometry known as Shastry-Sutherland lattice, and are stacked along the c axis in a ladder geometry. Yb2Pt2Pb orders antiferromagnetically at TN=2.07K, and the magnetic structure determined from these measurements features the interleaving of two orthogonal sublattices into a 5×5×1 magnetic supercell that is based on stripes with moments perpendicular to the dimer bonds, which are along (110) and (−110). Magnetic fields applied along (110) or (−110) suppress the antiferromagnetic peaks from an individual sublattice, but leave the orthogonal sublattice unaffected, evidence for the Ising character of the Yb moments in Yb2Pt2Pb that is supported by point charge calculations. Specific heat, magnetic susceptibility, and electrical resistivity measurements concur with neutron elastic scattering results that the longitudinal critical fluctuations are gapped with ΔE≃0.07meV

    Probing the Heterogeneity of Protein Kinase Activation in Cells by Super-Resolution Microscopy

    Get PDF
    Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intra-cluster distances (d). From this data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P50nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d<50nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells

    Free Energy Simulations of a GTPase: GTP and GDP Binding to Archaeal Initiation Factor 2

    Get PDF
    International audienceArchaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force field uncertainty, and somewhat lower than the predicted GTP/GDP binding free energy differences. The sign and magnitudes of the differences can thus be interpreted at a semiquantitative level, and are found to be consistent with the experimental binding preferences of ON- and OFF-aIF2

    A probabilistic model for gene content evolution with duplication, loss, and horizontal transfer

    Full text link
    We introduce a Markov model for the evolution of a gene family along a phylogeny. The model includes parameters for the rates of horizontal gene transfer, gene duplication, and gene loss, in addition to branch lengths in the phylogeny. The likelihood for the changes in the size of a gene family across different organisms can be calculated in O(N+hM^2) time and O(N+M^2) space, where N is the number of organisms, hh is the height of the phylogeny, and M is the sum of family sizes. We apply the model to the evolution of gene content in Preoteobacteria using the gene families in the COG (Clusters of Orthologous Groups) database

    The Moral of the Tale: Stories, Trust, and Public Engagement with Clinical Ethics via Radio and Theatre.

    Get PDF
    Trust is frequently discussed with reference to the professional-patient relationship. However, trust is less explored in relation to the ways in which understanding of, and responses to, questions of ethics are discussed by both the "public" and "experts." Public engagement activity in healthcare ethics may invoke "trust" in analysing a moral question or problem but less frequently conceives of trust as integral to "public engagement" itself. This paper explores the relationship between trust and the ways in which questions of healthcare ethics are identified and negotiated by both "experts" and the public. Drawing on two examples from the author's "public engagement" work-a radio programme for the British Broadcasting Corporation and work with a playwright and theatre-the paper interrogates the ways in which "public engagement" is often characterized. The author argues that the common approach to public engagement in questions of ethics is unhelpfully constrained by a systemic disposition which continues to privilege the professional or expert voice at the expense of meaningful exchange and dialogue. By creating space for novel interactions between the "expert" and the "public," authentic engagement is achieved that enables not only the participants to flourish but also contributes to trust itself
    corecore