8 research outputs found

    A geodetic study of the 2003 January 22 TecomĂĄn, Colima, Mexico earthquake

    Get PDF
    We use coseismic displacements and aftershock information from Global Positioning System (GPS) measurements at 27 sites in western Mexico and a 12-station local seismic network to determine the characteristics of the 2003 January 22 M_w = 7.2 subduction thrust earthquake near Tecomán, Colima, Mexico. Estimates of the earthquake moment, slip direction and best-fitting slip distribution are derived by optimizing the fit to the GPS displacements for a 3-D finite element mesh that simulates the study area. The calculated moment release is 9.1 × 10^(19) N m (M_w = 7.2) , with maximum slip of 2 m at a depth of 24 km and a maximum rupture depth of 35–40 km. The inversion indicates that coseismic rupture extended downdip from depths of 9 to 40 km along a 80 km along-strike region that is bounded by the edges of the Manzanillo Trough. The optimal solution is robust with respect to plausible changes in the subduction interface geometry and differing subsets of the data. A comparison of the cumulative post-seismic slip that can be inferred separately from earthquake aftershocks and GPS measurements within a year of the earthquake indicates that 95 per cent or more of the post-seismic deformation was aseismic. Near-term post-seismic measurements indicate that slip propagated downdip to areas of the subduction interface beneath the coastline within days following the earthquake, as also occurred after the nearby M_w = 8.0 Colima-Jalisco subduction earthquake in 1995. The similar behaviours and locations of the 1995/2003 earthquake sequence to two earthquakes in June of 1932 suggests that thrust earthquakes along the subduction interface northwest of the Manzanillo Trough may trigger earthquakes in the vicinity of the Manzanillo Trough; however, our modelling of Coulomb stress changes caused by the 1995 earthquake indicate that it induced only modest unclamping of the subduction interface in the vicinity of the Tecomán rupture. In addition, GPS measurements indicate that elastic shortening characterized areas onshore from the Tecomán rupture from mid-1997 up until the time of the rupture, consistent with progressively stronger clamping of the subduction interface during this period. This precludes any obvious triggering relationship with the 1995 earthquake. The apparent coincidence of the edge of both the 1932 and 1995/2003 rupture sequences with the edge of the Manzanillo Trough may indicate that the trough is a mechanical barrier to along-strike rupture propagation. This implies a limit to the area of potential slip and hence rupture magnitude during future large earthquakes in this region

    Co-Seismic and Post-Seismic deformation for the 1995 Colima–Jalisco and 2003 Tecoman thrust earthquakes, Mexico subduction zone, ́ from modelling of GPS data

    Get PDF
    We invert ∌25 yr of campaign and continuous Global Positioning System daily positions at 62 sites in southwestern Mexico to estimate co-seismic and post-seismic afterslip solutions for the 1995 Mw = 8.0 Colima–Jalisco and the 2003 Mw = 7.5 TecomĂĄn earthquakes, and the long-term velocity of each GPS site. Estimates of the viscoelastic effects of both earthquakes from a 3-D model with an elastic crust and subducting slab, and linear Maxwell viscoelastic mantle are used to correct the GPS position time-series prior to our time-dependent inversions. The preferred model, which optimizes the fit to data from several years of rapid post-seismic deformation after the larger 1995 earthquake, has a mantle Maxwell time of 15 yr (viscosity of 2 × 1019 Pa s), although upper-mantle viscosities as low as 5 × 1018 Pa s cannot be excluded. Our geodetic slip solutions for both earthquakes agree well with previous estimates derived from seismic data or via static co-seismic offset modelling. The afterslip solutions for both earthquakes suggest that most afterslip coincided with the rupture areas or occurred farther downdip and had cumulative moments similar to or larger than the co-seismic moments. Afterslip thus appears to relieve significant stress along the Rivera plate subduction interface, including the area of the interface between a region of deep non-volcanic tremor and the shallower seismogenic zone. We compare the locations of the seismogenic zone, afterslip and tremor in our study area to those of the neighbouring Guerrero and Oaxaca segments of the Mexico subduction zone. Our newly derived interseismic GPS site velocities, the first for western Mexico that are corrected for the co-seismic and post-seismic effects of the 1995 and 2003 earthquakes, are essential for future estimates of the interseismic subduction interface locking and hence the associated seismic hazard

    GPS-Derived Interseismic Fault Locking along the Jalisco–Colima Segment of the Mexico Subduction zone

    Get PDF
    Northeastward subduction of the oceanic Rivera and Cocos plates in western Mexico poses a poorly understood seismic hazard to the overlying areas of the North America plate. We estimate the magnitude and distribution of interseismic locking along the northern ∌500 km of the Mexico subduction zone, with a series of elastic half-space inversions that optimize the fits to the velocities of 57 GPS stations in western Mexico. All velocities were corrected for the co-seismic, afterslip and viscoelastic rebound effects of the 1995 Colima–Jalisco and 2003 TecomĂĄn earthquakes. We explore the robustness of interseismic locking estimates to a variety of mantle Maxwell times that are required for the viscoelastic corrections, to the maximum permitted depth for locking of the subduction interface and to the location assigned to the Rivera–Cocos–North America plate triple junction offshore from western Mexico. The best-fitting locking solutions are associated with a maximum locking depth of 40 km, a triple junction location ∌50 km northwest of the Manzanillo Trough and a mantle Maxwell time of 15 yr (viscosity of 2 × 1019 Pa s). Checkerboard tests show that the locking distribution is best resolved at intermediate depths (10–40 km). All of our inversions define a gradual transition from strong locking (i.e. 70–100 per cent) of most (70 per cent) of the Rivera–North America subduction interface to strong but less uniform locking below the Manzanillo Trough, where oceanic lithosphere transitional between the Cocos and Rivera plate subducts, to weak to moderate locking (averaging 55 per cent) of the MichoacĂĄn segment of the Cocos–North America interface. Strong locking of the ∌125-km-long trench segment offshore from Puerto Vallarta and other developed coastal areas, where our modelling indicates an average annual elastic slip-rate deficit of ∌20 mm yr−1, implies that ∌1.8 m of unrelieved plate slip has accrued since the segment last ruptured in 1932, sufficient for an M ∌ 8.0 earthquake

    Multivariate analysis of GPS position time series of JPL second reprocessing campaign

    No full text
    The second reprocessing of all GPS data gathered by the Analysis Centers of IGS was conducted in late 2013 using the latest models and methodologies. Improved models of antenna phase center variations and solar radiation pressure in JPL’s reanalysis are expected to significantly reduce errors. In an earlier work, JPL estimates of position time series, termed first reprocessing campaign, were examined in terms of their spatial and temporal correlation, power spectra, and draconitic signal. Similar analyses are applied to GPS time series at 89 and 66 sites of the second reanalysis with the time span of 7 and 21 years, respectively, to study possible improvements. Our results indicate that the spatial correlations are reduced on average by a factor of 1.25. While the white and flicker noise amplitudes for all components are reduced by 29–56 %, the random walk amplitude is enlarged. The white, flicker, and random walk noise amount to rate errors of, respectively, 0.01, 0.12, and 0.09 mm/yr in the horizontal and 0.04, 0.41 and 0.3 mm/yr in the vertical. Signals reported previously, such as those with periods of 13.63, 14.76, 5.5, and 351.4 / n for n=1,2,
,8 n=1,2,
,8 days, are identified in multivariate spectra of both data sets. The oscillation of the draconitic signal is reduced by factors of 1.87, 1.87, and 1.68 in the east, north and up components, respectively. Two other signals with Chandlerian period and a period of 380 days can also be detected.Aircraft Noise and Climate Effect
    corecore