17 research outputs found

    Some aspects of the thioether donation in aminoacids and peptides complexes

    No full text
    This short review concerns complexation of thioether function of aminoacids and peptides with some metal ions, mainly palladium, platinum, mercury, silver, cobalt and copper. The structural and spectroscopic characteristics of the formed complexes are discussed from X-ray, N.M.R., I.R., U.V. visible and CD studies. In the case of silver ion, the results of potentiometric studies are also given

    A model experiment to understand the oral phase of swallowing of Newtonian liquids

    Get PDF
    A model experiment to understand the oral phase of swallowing is presented and used to explain some of the mechanisms controlling the swallowing of Newtonian liquids. The extent to which the flow is slowed down by increasing the viscosity of the liquid or the volume is quantitatively studied. The effect of the force used to swallow and of the gap between the palate and the roller used to represent the contracted tongue are also quantified. The residual mass of liquid left after the model swallow rises strongly when increasing the gap and is independent of bolus volume and applied force. An excessively high viscosity results in higher residues, besides succeeding in slowing down the bolus flow. A realistic theory is developed and used to interpret the experimental observations, highlighting the existence of an initial transient regime, at constant acceleration, that can be followed by a steady viscous regime, at constant velocity. The effect of the liquid viscosity on the total oral transit time is lower when the constant acceleration regime dominates bolus flow. Our theory suggests also that tongue inertia is the cause of the higher pressure observed at the back of the tongue in previous studies. The approach presented in this study paves the way toward a mechanical model of human swallowing that would facilitate the design of novel, physically sound, dysphagia treatments and their preliminary screening before in vivo evaluations and clinical trials

    In vivo observations and in vitro experiments on the oral phase of swallowing of Newtonian and shear-thinning liquids

    Get PDF
    In this study, an in vitro device that mimics the oral phase of swallowing is calibrated using in vivo measurements. The oral flow behavior of different Newtonian and non-Newtonian solutions is then investigated in vitro, revealing that shear-thinning thickeners used in the treatment of dysphagia behave very similarly to low-viscosity Newtonian liquids during active swallowing, but provide better control of the bolus before the swallow is initiated. A theoretical model is used to interpret the experimental results and enables the identification of two dynamical regimes for the flow of the bolus: first, an inertial regime of constant acceleration dependent on the applied force and system inertia, possibly followed by a viscous regime in which the viscosity governs the constant velocity of the bolus. This mechanistic understanding provides a plausible explanation for similarities and differences in swallowing performance of shear-thinning and Newtonian liquids. Finally, the physiological implications of the model and experimental results are discussed. In vitro and theoretical results suggest that individuals with poor tongue strength are more sensitive to overly thickened boluses. The model also suggests that while the effects of system inertia are significant, the density of the bolus itself plays a negligible role in its dynamics. This is confirmed by experiments on a high density contrast agent used for videofluoroscopy, revealing that rheologically matched contrast agents and thickener solutions flow very similarly. In vitro experiments and theoretical insights can help designing novel thickener formulations before clinical evaluations
    corecore