80 research outputs found

    Breast cancer-related lymphedema: A literature review for clinical practice

    Get PDF
    AbstractLymphedema is the swelling of soft tissues as a result of the accumulation of protein-rich fluid in extracellular spaces. Secondary lymphedema is precipitated by an event causing blockage or interruption of the lymphatic vessels. Secondary lymphedema is a potential complication that may affect the quality of life of patients treated for breast cancer. Life-long risk factors of post-breast cancer lymphedema are related to the extent of axillary node involvement, type of breast surgery, and radiation therapy. These factors decrease lymphatic drainage and increase stasis of fluids in the areas of skin and subcutaneous tissues that drain to regional lymph nodes. Breast cancer-related lymphedema can involve the arm and hand, as well as the breast and trunk on the operative side. Clinical symptom assessment and circumferential measures are widely used to evaluate lymphedema. Treatment of lymphedema associated with breast cancer can include combined modality approaches, compression therapy, therapeutic exercises, and pharmacotherapy

    The apparent Coulomb reacceleration of neutrons in electrodissociation of the deuteron

    Get PDF
    We demonstrate that the final state pp-nn interaction in the reaction of electrodissociation of the deuteron at large Q2Q^{2} in a static external field leads to the apparent reacceleration of neutrons. The shift of the neutron velocity from the velocity of the deuteron beam is related to the quantum-mechanical forward-backward asymmetry of the missing momentum distribution in the 2H(e,eâ€Čp)n^2H(e,e'p)n scattering.Comment: LATEX, 9 pages, 1 figure available from the authors on request, Juelich preprint KFA-IKP(TH)-1994-3

    Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses

    Full text link
    The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2ω2\omega, with ω\omega the laser frequency, to a 2D electromagnetic oscillation at frequency ω\omega and wavevector k>ω/ck>\omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for publication in Phys. Rev. Let

    Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions

    Get PDF
    Two scenarios for the penetration of relativistically intense laser radiation into an overdense plasma, accessible by self-induced transparency, are presented. For supercritical densities less than 1.5 times the critical one, penetration of laser energy occurs by soliton-like structures moving into the plasma. At higher background densities laser light penetrates over a finite length only, that increases with the incident intensity. In this regime plasma-field structures represent alternating electron layers separated by about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR

    Quadrupole deformation of deuterons and final state interaction in 2H⃗(e,eâ€Čp)^2 \vec H (e,e'p) scattering on tensor polarized deuterons at CEBAF energies

    Full text link
    The strength of final state interaction (FSI) between struck proton and spectator neutron in 2H⃗(e,eâ€Čp)^2\vec{H}(e,e'p) scattering depends on the alignment of the deuteron. We study the resulting FSI effects in the tensor analyzing power in detail and find substantial FSI effects starting at still low missing momentum p_m \gsim 0.9 fm^{-1}. At larger p_m \gsim 1.5 fm^{-1}, FSI completely dominates both missing momentum distribution and tensor analyzing power. We find that to a large extent FSI masks the sensitivity of the tensor analyzing power to models of the deuteron wave function. For the transversely polarized deuterons the FSI induced forward-backward asymmetry of the missing momentum distribution is shown to have a node at precisely the same value of pmp_m as the PWIA missing momentum distribution. The position of this node is not affected by FSI and can be a tool to distinguish experimentally between different models for the deuteron wave function.Comment: 24 pages, figures available from the authors on reques

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st

    Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    Full text link
    Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Plasmas, 14(9), 092703_1-092703_5, 2007 and may be found at http://dx.doi.org/10.1063/1.277400
    • 

    corecore