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Status of the Laser Inertial Fusion Energy (LIFE) Hohlraum Point Design 

P. Amendt1), M. Dunne2), D. Ho2), B. Lasinski2), D. Meeker2), and J.S. Ross2) 
1) Lawrence Livermore National Laboratory, Livermore CA 94551 USA; (925) 4232162; amendt1@llnl.gov; 

2) Lawrence Livermore National Laboratory  

Abstract: Progress on the hohlraum point design for the LIFE engine is described. New features in the original design [Amendt et al., 
Fus. Sci. Technol. 60, 49 (2011)] are incorporated that address the imperatives of low target cost, high manufacturing throughput, 
efficient and prompt material recycling, an ability for near-term testing of key target design uncertainties on the National Ignition 
Facility, and robustness to target chamber environment and injection insults. To this end, the novel use of Pb hohlraums and 
aerogel-supported liquid DT fuel loading within a high-density-carbon (HDC) ablator is implemented in the hohlraum point design. 
 

1. Introduction 
The National Ignition Facility (NIF) is aiming to 
demonstrate ignition by 2013 using the central hot spot 
mode of ignition and propagating thermonuclear burn 
[1]. A success-based, follow-on strategy is to advance 
inertial fusion as a carbon-free, virtually limitless source 
of energy by the mid-21st century that substantially 
offsets fossil fuel technologies. To this end, an intensive 
effort is underway to leverage expected success at the 
NIF and to provide the foundations for a prototype 
market entry plant, followed by a demonstration power 
plant operating at 1 GWe. The current design goal for 
LIFE is to accommodate ~2.2 MJ of laser energy 
(entering the high-Z radiation enclosure or “hohlraum”) 
at a 0.351 µm wavelength operating at a repetition rate 
of ~16 Hz, and to provide a fusion target yield of 132 MJ 
[2].      
      The requirements of a LIFE point target design are 
challenging in many ways. First, the integrated target 
(hohlraum + capsule) must survive intact the injection 
phase (~700 g’s of acceleration) to target chamber 
center. This means that the position of the capsule 
relative to hohlraum center must be maintained to within 
100 µm and the integrity of the cryogenic deuterium-
tritium (DT) fuel layer is not appreciably compromised. 
Second, the materials comprising the integrated target 
must be low cost, recoverable and recyclable [3], as well 
as compatible with chamber system operations [4]. 
Third, the target design must ensure adequate 
performance margin to assure reliable base load 
electricity generation. This includes sufficient robustness 
to hydrodynamic instability growth in the capsule and 
benign laser backscatter from parametric instabilities 
generated in the hohlraum, gas-fill and capsule blowoff 
plasmas. Fourth, the design of the LIFE target must not 
substantially deviate from the current laser beam 
geometry on the NIF in order to allow direct testing of 
ignition thresholds and performance margins. In 
addition, the target design must allow for LIFE-relevant 
sensitivity studies on the NIF to define allowed laser 
pointing and target fabrication errors.  
     The technique of choice for developing a LIFE target 
point design are 1- and 2-dimensional radiation 
hydrodynamics simulations that self-consistently 
incorporate laser beam transport, x-ray radiation trans-

port, atomic physics, and thermonuclear burn.2 These 
simulations form the basis for assessing the 
susceptibility to hydrodynamic instability growth, target 
performance margins, laser backscatter induced by 
plasma density fluctuations within the hohlraum, and the 
threat spectrum emerging from the igniting capsule, e.g., 
spectra, fluences and anisotropy of the x rays and ions, 
for input into the chamber survivability calculations. The 
simulations follow the guidelines of a “point design” 
methodology, which formally designates a well-defined 
milestone in concept development that meets established 
criteria for experimental testing.  
 
2. Challenges with current point target design 
The previously reported LIFE point target design [5] has 
several features that need to be redressed on the path to 
establishing inertial fusion energy viability. 

2.1 Pb hohlraums 
The former point design [5] was based on a NIF ignition 
point design and used a gold-uranium hohlraum wall for 
optimal hohlraum efficiency. This material is not 
compatible with the target fabrication costs and non-
proliferation requirements of a LIFE power plant. 
Consequently, Pb has been proposed as an economical 
and low activation candidate hohlraum material. Recent 
experiments on the Omega laser facility have 
demonstrated comparable performance to pure Au 
hohlraums. However, a 15-17% decline in hohlraum 
efficiency with Pb is expected compared with Au-U, 
based on integrated hohlraum simulations.  
 
2.2 Foam loading of DT fuels 
The previous design assumed a solid DT fuel layer 
within the HDC ablator [5]. Unfortunately, the standard 
method of β-layering for self-smoothing of the gas/solid 
DT interface is prohibitively time-consuming (currently 
~12 hours) and is projected to lead to an unacceptably 
high tritium inventory (with accompanying strict and 
costly nuclear regulatory requirements). A promising 
solution to this problem is the use of nano-porous, 
carbon-based, DT-wetted, annular foams [6]. The 
tradeoff in such a technology is the 14% lower fuel 
density (and target output energy gain) and 
contamination of the fuel by carbon for enhanced 
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(radiation) energy losses. The revised target point design 
uses 20 mg/cc CH1.2 (dicyclopentadienyl) nano-porous 
foams for liquid DT loading of the LIFE capsule. 
 
2.3 Laser energy balance 
Another challenge with the former design was the 
required large imbalance (~3 ) in energy (and power) 
between the inner beams (30° incidence angle relative to 
the hohlraum symmetry axis) and outer beams (50°) 
required to achieve acceptable x-ray drive symmetry on 
the capsule. Such a partitioning of laser energy promotes 
a high risk of Raman backscatter in the inner cone, due 
to the larger path length and intensity. In addition, the 
LIFE power plant design benefits significantly from 
achieving a more uniform distribution of the (laser) line 
replaceable units in the target chamber exterior.  

3. Revised LIFE target point design 
Figure 1 shows the revised hohlraum and laser cone 
geometry for the current point design. In order to achieve 
more energy balance between the inner and outer cones, 
the hohlraum was appreciably shortened, the hohlraum 
gas fill density was increased to minimize symmetry 
excursions in time, and the cone angles modified (35°, 
55°) to provide greater clearance with the pair of laser 
entrance holes (LEHs) and P2-shields. By virtue of using 
Pb hohlraums and the foam-supported DT fuel, an 
energetics penalty of nearly 600 kJ is expected. 
However, the use of a shorter hohlraum and higher gain 
capsule design is found to appreciably offset these two 
sources of inefficiency.   
     The 1-D thermonuclear yield is 242 MJ with an input 
laser energy of ~2.7 MJ. Symmetry tuning of the 
hohlraum is accomplished by repositioning the laser 
beams, by varying the power fraction of the two cones of 
beams  in  a  time-dependent  manner,  by  adjusting   the  
  

 
Fig. 1. Schematic of (quarter) rugby-shaped hohlraum 
showing HDC ablator, P2-shield and incident laser 
cone angles. 

position and height of the P2-shield, or by changing the 
LEH fraction. Over 95% of the 1-D yield is expected 
when the hohlraum flux symmetry is satisfactorily tuned. 
The requirement of nearly equal cone energy fractions is 
now met with this improved hohlraum geometry. An 
assessment of backscatter arising from laser-plasma 
interactions is planned, and sensitivity to laser pointing 
and hohlraum/capsule fabrication errors will also be 
assessed. In addition, the overall performance margin of 
the design will be quantified, as well as the susceptibility 
to hydrodynamic instability. All of these degradation 
effects are seen as ultimately testable on the NIF. 

4. Conclusions 
Progress in developing an improved LIFE target point 
design in 2-D radiation-hydrodynanics simulations is 
described that aims to redress the key issues of target 
material cost and recovery, simplified fabrication 
protocol for DT fuel loading of the capsule, and chamber 
system operation compatibility. Three main 
improvements to the original LIFE target point design 
are discussed: (1) use of Pb hohlraums for low material 
and fabrication costs along with low activation; (2) 
aerogel-supported DT fuel loading for reduced tritium 
inventory and simplified fabrication protocol; and (3) 
balanced inner and outer laser cone energy for LIFE 
facility optimization. 
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5. Figures 
Figures should be included directly in the document and 
placed as close as possible to where they are mentioned 
in the text. All the figures should be centered, except for 
small figures no wider than 8 cm (3.1 in.), which may be 
placed in a column. No part of a figure should go beyond 
the typing area. Text should not be wrapped around 
figures. 

One line figure captions should be centered beneath 
the figure. Figure captions with more than one line 
should be indented 1 cm on both margins. The 
abbreviation “Fig.” for figure should appear first 
followed by the figure number and a period. Captions 
should be in 9 pt. font. 
 

 
Fig. 1. Sample figure. Symbol of this conference. 

6. Equations 
Equations should be centered, unless they are so long 
that less than 1 cm will be left between the end of the 
equation and the equation number, in which case they 
may run on to the next line. Equation numbers should 
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appear at the right-hand margin, in parenthesis. For long 
equations, the equation number may appear on the next 
line. For very long equations, the right side of the 
equation should be broken into approximately equal 
parts and aligned to the right of the equal sign. The 
equation number should appear only at the right hand 
margin of the last line of the equation. 

7. Conclusions 
Describe the conclusions of your paper concisely. 
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