95 research outputs found

    Variation of Input Impedance with Feeding Position in Probe and inset-Fed Microstrip Patch Antenna

    Get PDF
    Proper impedance matching of a microstrip patch antenna to the feed line is paramount for efficient radiation. However, impedance matching in such a system is not easy and consequently most systems suffer from return losses. The variation of the input impedance of a probe-fed and inset-fed rectangular microstrip patch antennas along the longitudinal and transverse lengths is investigated on probe-fed and microstrip-fed antenna operating at 2.4GHz and 2.0GHz respectively. FEKO simulation software is used to evaluate and characterize the behaviour of the input resistance for varying values of feeding position. It is observed that the transverse variation in the input resistance is very minimal. The conclusion drawn here is that a cosine squared and shifted cosine squared function can be used to exactly locate the feed point in a probe and inset fed antennas respectively for an impedance matched antenna system.   Keywords: Longitudinal feeding position, FEKO, probe feeding, inset feeding, input impedance, return loss

    Development of a botanical plant protection product from Larix by-products to protect grapevine from Plasmopara viticola

    Get PDF
    Extracts from European Larch (Larix decidua) were shown to be efficient to control grapevine downy mildew (Plasmopara viticola) under controlled and field conditions. Larixyl acetate and larixol were identified as the active compounds

    Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System

    Get PDF
    As Digital Twins gain more traction and their adoption in industry increases, there is a need to integrate such technology with machine learning features to enhance functionality and enable decision making tasks. This has lead to the emergence of a concept known as Digital Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards exploring its applicability, development and testing of means for implementation and quick adoption. This paper presents the design and implementation of a Digital Triplet for a three-floor elevator system. It demonstrates the integration of a machine learning (ML) object detection model and the system Digital Twin. This was done to introduce an additional security feature that enabled the system to make a decision, based on objects detected and take preliminary security measures. The virtual model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal software. The corresponding physical model was fabricated and controlled using a Programmable Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations of a typical elevator system used in a commercial building setting. Communication, between the physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol. Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated actual operations of the physical counterpart through the use of sensor data. Performance testing was done to determine the impact of the ML module on the real-time functionality aspect of the system. Experiment results showed the object recognition contributed an average of 1.083s to an overall signal travel time of 1.338 s

    The role of HLA-G in human pregnancy

    Get PDF
    Pregnancy in mammals featuring hemochorial placentation introduces a major conflict with the mother's immune system, which is dedicated to repelling invaders bearing foreign DNA and RNA. Numerous and highly sophisticated strategies for preventing mothers from rejecting their genetically different fetus(es) have now been identified. These involve production of novel soluble and membrane-bound molecules by uterine and placental cells. In humans, the placenta-derived molecules include glycoproteins derived from the HLA class Ib gene, HLA-G. Isoforms of HLA-G saturate the maternal-fetal interface and circulate in mothers throughout pregnancy. Uteroplacental immune privilege for the fetus and its associated tissues is believed to result when immune cells encounter HLA-G. Unequivocally demonstration of this concept requires experiments in animal models. Both the monkey and the baboon express molecules that are similar but not identical to HLA-G, and may comprise suitable animal models for establishing a central role for these proteins in pregnancy

    Earthquake vulnerability assessment for urban areas using an ann and hybrid swot-qspm model

    Full text link
    Tabriz city in NW Iran is a seismic-prone province with recurring devastating earthquakes that have resulted in heavy casualties and damages. This research developed a new computational framework to investigate four main dimensions of vulnerability (environmental, social, economic and physical). An Artificial Neural Network (ANN) Model and a SWOT-Quantitative Strategic Planning Matrix (QSPM) were applied. Firstly, a literature review was performed to explore indicators with significant impact on aforementioned dimensions of vulnerability to earthquakes. Next, the twenty identified indicators were analyzed in ArcGIS, a geographic information system (GIS) software, to map earthquake vulnerability. After classification and reclassification of the layers, standardized maps were presented as input to a Multilayer Perceptron (MLP) and Self-Organizing Map (SOM) neural network. The resulting Earthquake Vulnerability Maps (EVMs) showed five categories of vulnerability ranging from very high, to high, moderate, low and very low. Accordingly, out of the nine municipality zones in Tabriz city, Zone one was rated as the most vulnerable to earthquakes while Zone seven was rated as the least vulnerable. Vulnerability to earthquakes of residential buildings was also identified. To validate the results data were compared between a Multilayer Perceptron (MLP) and a Self-Organizing Map (SOM). The scatter plots showed strong correlations between the vulnerability ratings of the different zones achieved by the SOM and MLP. Finally, the hybrid SWOT-QSPM paradigm was proposed to identify and evaluate strategies for hazard mitigation of the most vulnerable zone. For hazard mitigation in this zone we recommend to diligently account for environmental phenomena in designing and locating of sites. The findings are useful for decision makers and government authorities to reconsider current natural disaster management strategies

    Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Get PDF
    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally

    Identification of Common Differentially Expressed Genes in Urinary Bladder Cancer

    Get PDF
    BACKGROUND: Current diagnosis and treatment of urinary bladder cancer (BC) has shown great progress with the utilization of microarrays. PURPOSE: Our goal was to identify common differentially expressed (DE) genes among clinically relevant subclasses of BC using microarrays. METHODOLOGY/PRINCIPAL FINDINGS: BC samples and controls, both experimental and publicly available datasets, were analyzed by whole genome microarrays. We grouped the samples according to their histology and defined the DE genes in each sample individually, as well as in each tumor group. A dual analysis strategy was followed. First, experimental samples were analyzed and conclusions were formulated; and second, experimental sets were combined with publicly available microarray datasets and were further analyzed in search of common DE genes. The experimental dataset identified 831 genes that were DE in all tumor samples, simultaneously. Moreover, 33 genes were up-regulated and 85 genes were down-regulated in all 10 BC samples compared to the 5 normal tissues, simultaneously. Hierarchical clustering partitioned tumor groups in accordance to their histology. K-means clustering of all genes and all samples, as well as clustering of tumor groups, presented 49 clusters. K-means clustering of common DE genes in all samples revealed 24 clusters. Genes manifested various differential patterns of expression, based on PCA. YY1 and NFκB were among the most common transcription factors that regulated the expression of the identified DE genes. Chromosome 1 contained 32 DE genes, followed by chromosomes 2 and 11, which contained 25 and 23 DE genes, respectively. Chromosome 21 had the least number of DE genes. GO analysis revealed the prevalence of transport and binding genes in the common down-regulated DE genes; the prevalence of RNA metabolism and processing genes in the up-regulated DE genes; as well as the prevalence of genes responsible for cell communication and signal transduction in the DE genes that were down-regulated in T1-Grade III tumors and up-regulated in T2/T3-Grade III tumors. Combination of samples from all microarray platforms revealed 17 common DE genes, (BMP4, CRYGD, DBH, GJB1, KRT83, MPZ, NHLH1, TACR3, ACTC1, MFAP4, SPARCL1, TAGLN, TPM2, CDC20, LHCGR, TM9SF1 and HCCS) 4 of which participate in numerous pathways. CONCLUSIONS/SIGNIFICANCE: The identification of the common DE genes among BC samples of different histology can provide further insight into the discovery of new putative markers

    Ethical issues in human genomics research in developing countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies (GWAS) provide a powerful means of identifying genetic variants that play a role in common diseases. Such studies present important ethical challenges. An increasing number of GWAS is taking place in lower income countries and there is a pressing need to identify the particular ethical challenges arising in such contexts. In this paper, we draw upon the experiences of the MalariaGEN Consortium to identify specific ethical issues raised by such research in Africa, Asia and Oceania.</p> <p>Discussion</p> <p>We explore ethical issues in three key areas: protecting the interests of research participants, regulation of international collaborative genomics research and protecting the interests of scientists in low income countries. With regard to participants, important challenges are raised about community consultation and consent. Genomics research raises ethical and governance issues about sample export and ownership, about the use of archived samples and about the complexity of reviewing such large international projects. In the context of protecting the interests of researchers in low income countries, we discuss aspects of data sharing and capacity building that need to be considered for sustainable and mutually beneficial collaborations.</p> <p>Summary</p> <p>Many ethical issues are raised when genomics research is conducted on populations that are characterised by lower average income and literacy levels, such as the populations included in MalariaGEN. It is important that such issues are appropriately addressed in such research. Our experience suggests that the ethical issues in genomics research can best be identified, analysed and addressed where ethics is embedded in the design and implementation of such research projects.</p
    corecore