427 research outputs found

    Commentary: Task-Switching in Pigeons: Associative Learning or Executive Control?

    Get PDF
    A commentary on Task-Switching in Pigeons: Associative Learning or Executive Control? by Meier, C., Lea, S., and McLaren, I. (2016). J. Exp. Psychol. Anim. Learn. Cogn. 42, 163–176. doi: 10.1037/xan000010

    Decoherence by a chaotic many-spin bath

    Get PDF
    We numerically investigate decoherence of a two-spin system (central system) by a bath of many spins 1/2. By carefully adjusting parameters, the dynamical regime of the bath has been varied from quantum chaos to regular, while all other dynamical characteristics have been kept practically intact. We explicitly demonstrate that for a many-body quantum bath, the onset of quantum chaos leads to significantly faster and stronger decoherence compared to an equivalent non-chaotic bath. Moreover, the non-diagonal elements of the system's density matrix decay differently for chaotic and non-chaotic baths. Therefore, knowledge of the basic parameters of the bath (strength of the system-bath interaction, bath's spectral density of states) is not always sufficient, and much finer details of the bath's dynamics can strongly affect the decoherence process.Comment: 4 pages, RevTeX, 5 eps figure

    Illusory Increases in Font Size Improve Letter Recognition

    Get PDF
    Visual performance of human observers depends not only on the optics of the eye and early sensory encoding but also on subsequent cortical processing and representations. In two experiments, we demonstrated that motion adaptation can enhance as well as impair visual acuity. Observers who experienced an expanding motion aftereffect exhibited improved letter recognition, whereas observers who experienced a contracting motion aftereffect showed impaired letter recognition. We conclude that illusory enlargement and shrinkage of a visual stimulus can modulate visual acuity

    Cooper problem in the vicinity of Anderson transition

    Full text link
    We study numerically the ground state properties of the Cooper problem in the three-dimensional Anderson model. It is shown that attractive interaction creates localized pairs in the metallic noninteracting phase. This localization is destroyed at sufficiently weak disorder. The phase diagram for the delocalization transition in the presence of disorder and interaction is determined.Comment: revtex, 4 pages, 4 figure

    2-Chloro-6,6-dimethyl-5,6-dihydro­indazolo[2,3-c]quinazoline

    Get PDF
    Two independent but virtually identical mol­ecules comprise the asymmetric unit of the title compound, C16H14ClN3. The mol­ecules have a slightly curved shape owing to puckering in the six-membered C4N2 ring; the respective dihedral angles formed between the benzene rings are 12.64 (7) and 11.72 (7)°. In the crystal, layers sustained by a combination of N—H⋯N hydrogen bonding as well as C—H⋯N and C—H⋯π contacts are formed; these stack along [011] and are connected by further C—H⋯π contacts

    Transition to an Insulating Phase Induced by Attractive Interactions in the Disordered Three-Dimensional Hubbard Model

    Full text link
    We study numerically the interplay of disorder and attractive interactions for spin-1/2 fermions in the three-dimensional Hubbard model. The results obtained by projector quantum Monte Carlo simulations show that at moderate disorder, increasing the attractive interaction leads to a transition from delocalized superconducting states to the insulating phase of localized pairs. This transition takes place well within the metallic phase of the single-particle Anderson model.Comment: revtex, 4 pages, 3 figure
    corecore