1,374 research outputs found
Plasmon polaritons in photonic superlattices containing a left-handed material
We analyze one-dimensional photonic superlattices which alternate layers of
air and a left-handed material. We assume Drude-type dispersive responses for
the dielectric permittivity and magnetic permeability of the left-handed
material. Maxwell's equations and the transfer-matrix technique are used to
derive the dispersion relation for the propagation of obliquely incident
optical fields. The photonic dispersion indicates that the growth-direction
component of the electric (or magnetic) field leads to the propagation of
electric (or magnetic) plasmon polaritons, for either TE or TM configurations.
Furthermore, we show that if the plasma frequency is chosen within the photonic
zeroth-order bandgap, the coupling of light with plasmons
weakens considerably. As light propagation is forbidden in that particular
frequency region, the plasmon-polariton mode reduces to a pure plasmon mode.Comment: 4 pages, 4 figure
Redox-regulated chaperone function and conformational changes of Escherichia coli Hsp33
We have studied the chaperone activity and conformation of Escherichia coli heat shock protein (Hsp)33, whose activity is known to be switched on by oxidative conditions. While oxidized Hsp33 completely prevents the heat-induced aggregation of ζ-crystallin at 42°C at a ratio of 1:1 (w/w), the reduced form exhibits only a marginal effect on the aggregation. Far UV–circular dichroism (CD) spectra show that reduced Hsp33 contains a significant α-helical component. Oxidation results in significant changes in the far UV–CD spectrum. Near UV–CD spectra show changes in tertiary structural packing upon oxidation. Polarity-sensitive fluorescent probes report enhanced hydrophobic surfaces in the oxidized Hsp33. Our studies show that the oxidative activation of the chaperone function of Hsp33 involves observable conformational changes accompanying increased exposure of hydrophobic pockets
A role for Malignant Brain Tumor Domain-containing Protein 1 in human endometrial stromal cell decidualization
Up to 30% of women experience early miscarriage due to impaired decidualization. For implantation to occur, the uterine endometrial stromal fibroblast-like cells must differentiate into decidual cells, but the genes required for decidualization have not been fully defined. Here, we show that Malignant Brain Tumor Domain-containing Protein 1 (MBTD1), a member of the polycomb group protein family, is critical for human endometrial stromal cell (HESC) decidualization. MBTD1 predominantly localized to HESCs during the secretory phase and the levels were significantly elevated durin
Constructive control of quantum systems using factorization of unitary operators
We demonstrate how structured decompositions of unitary operators can be
employed to derive control schemes for finite-level quantum systems that
require only sequences of simple control pulses such as square wave pulses with
finite rise and decay times or Gaussian wavepackets. To illustrate the
technique it is applied to find control schemes to achieve population transfers
for pure-state systems, complete inversions of the ensemble populations for
mixed-state systems, create arbitrary superposition states and optimize the
ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge
University ([email protected]
Magic Numbers of Silicon Clusters
A structural model for intermediate sized silicon clusters is proposed that
is able to generate unique structures without any dangling bonds. This
structural model consists of bulk-like core of five atoms surrounded by
fullerene-like surface. Reconstruction of the ideal fullerene geometry results
in the formation of crown atoms surrounded by -bonded dimer pairs. This
model yields unique structures for \Si{33}, \Si{39}, and \Si{45} clusters
without any dangling bonds and hence explains why these clusters are least
reactive towards chemisorption of ammonia, methanol, ethylene, and water. This
model is also consistent with the experimental finding that silicon clusters
undergo a transition from prolate to spherical shapes at \Si{27}. Finally,
reagent specific chemisorption reactivities observed experimentally is
explained based on the electronic structures of the reagents.Comment: 4 pages + 3 figures (postscript files after \end{document}
Casimir force between designed materials: what is possible and what not
We establish strict upper limits for the Casimir interaction between
multilayered structures of arbitrary dielectric or diamagnetic materials. We
discuss the appearance of different power laws due to frequency-dependent
material constants. Simple analytical expressions are in good agreement with
numerical calculations based on Lifshitz theory. We discuss the improvements
required for current (meta) materials to achieve a repulsive Casimir force.Comment: 9 pages, 4 figures, graphicx, v4: Europhysics Letters, in pres
Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings
The impacts of drought on plant growth and development limit cereal crop production worldwide. Rice (Oryza sativa) productivity and production is severely affected due to recurrent droughts in almost all agroecological zones. With the advent of molecular and genomic technologies, emphasis is now placed on understanding the mechanisms of genetic control of the drought-stress response. In order to identify genes associated with water-stress response in rice, ESTs generated from a normalized cDNA library, constructed from drought-stressed leaf tissue of an indica cultivar, Nagina 22 were used. Analysis of 7794 cDNA sequences led to the identification of 5815 rice ESTs. Of these, 334 exhibited no significant sequence homology with any rice ESTs or full-length cDNAs in public databases, indicating that these transcripts are enriched during drought stress. Analysis of these 5815 ESTs led to the identification of 1677 unique sequences. To characterize this drought transcriptome further and to identify candidate genes associated with the drought-stress response, the rice data were compared with those for abiotic stress-induced sequences obtained from expression profiling studies in Arabidopsis, barley, maize, and rice. This comparative analysis identified 589 putative stress-responsive genes (SRGs) that are shared by these diverse plant species. Further, the identified leaf SRGs were compared to expression profiles for a drought-stressed rice panicle library to identify common sequences. Significantly, 125 genes were found to be expressed under drought stress in both tissues. The functional classification of these 125 genes showed that a majority of them are associated with cellular metabolism, signal transduction, and transcriptional regulation
Noise Stabilization of Self-Organized Memories
We investigate a nonlinear dynamical system which ``remembers'' preselected
values of a system parameter. The deterministic version of the system can
encode many parameter values during a transient period, but in the limit of
long times, almost all of them are forgotten. Here we show that a certain type
of stochastic noise can stabilize multiple memories, enabling many parameter
values to be encoded permanently. We present analytic results that provide
insight both into the memory formation and into the noise-induced memory
stabilization. The relevance of our results to experiments on the
charge-density wave material is discussed.Comment: 29 pages, 6 figures, submitted to Physical Review
New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests
Assessing the seasonal patterns of the Amazon rainforests has been difficult because of the paucity of ground observations and persistent cloud cover over these forests obscuring optical remote sensing observations. Here, we use data from a new generation of geostationary satellites that carry the Advanced Baseline Imager (ABI) to study the Amazon canopy. ABI is similar to the widely used polar orbiting sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), but provides observations every 10–15 min. Our analysis of NDVI data collected over the Amazon during 2018–19 shows that ABI provides 21–35 times more cloud-free observations in a month than MODIS. The analyses show statistically significant changes in seasonality over 85% of Amazon forest pixels, an area about three times greater than previously reported using MODIS data. Though additional work is needed in converting the observed changes in seasonality into meaningful changes in canopy dynamics, our results highlight the potential of the new generation geostationary satellites to help us better understand tropical ecosystems, which has been a challenge with only polar orbiting satellites
Gut microbiota and microbiota-derived metabolites promotes endometriosis
Endometriosis is a pathological condition of the female reproductive tract characterized by the existence of endometrium-like tissue at ectopic sites, affecting 10% of women between the age 15 and 49 in the USA. However, currently there is no reliable non-invasive method to detect the presence of endometriosis without surgery and many women find hormonal therapy and surgery as ineffective in avoiding the recurrences. There is a lack of knowledge on the etiology and the factors that contribute to the development of endometriosis. A growing body of recent evidence suggests an association between gut microbiota and endometriosis pathophysiology. However, the direct impact of microbiota and microbiota-derived metabolites on the endometriosis disease progression is largely unknown. To understand the causal role of gut microbiota and endometriosis, we have implemented a novel model using antibiotic-induced microbiota-depleted (MD) mice to investigate the endometriosis disease progression. Interestingly, we found that MD mice showed reduced endometriotic lesion growth and, the transplantation of gut microbiota by oral gavage of feces from mice with endometriosis rescued the endometriotic lesion growth. Additionally, using germ-free donor mice, we indicated that the uterine microbiota is dispensable for endometriotic lesion growth in mice. Furthermore, we showed that gut microbiota modulates immune cell populations in the peritoneum of lesions-bearing mice. Finally, we found a novel signature of microbiota-derived metabolites that were significantly altered in feces of mice with endometriosis. Finally, we found one the altered metabolite, quinic acid promoted the survival of endometriotic epithelial cells in vitro and lesion growth in vivo, suggesting the disease-promoting potential of microbiota-derived metabolites. In summary, these data suggest that gut microbiota and microbiota-derived metabolome contribute to lesion growth in mice, possibly through immune cell adaptations. Of translational significance, these findings will aid in designing non-invasive diagnostics using stool metabolites for endometriosis
- …