4,020 research outputs found
Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745
We report first results from an ongoing monitoring campaign to measure time
delays between the six images of the quasar SDSS\,J22222745, gravitationally
lensed by a galaxy cluster. The time delay between A and B, the two most highly
magnified images, is measured to be days (95\%
confidence interval), consistent with previous model predictions for this lens
system. The strong intrinsic variability of the quasar also allows us to derive
a time delay value of days between image C and A,
in spite of modest overlap between their light curves in the current data set.
Image C, which is predicted to lead all the other lensed quasar images, has
undergone a sharp, monotonic flux increase of 60-75\% during 2014. A
corresponding brightening is firmly predicted to occur in images A and B during
2016. The amplitude of this rise indicates that time delays involving all six
known images in this system, including those of the demagnified central images
D-F, will be obtainable from further ground-based monitoring of this system
during the next few years.Comment: 9 pages, 9 figures, Version accepted for publication in Ap
On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies
We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line
emission in five bright star-forming galaxies at 1.66<z<1.91 that have been
gravitationally lensed by foreground galaxy clusters. All five galaxies show
prominent Mg II emission and absorption in a P Cygni profile. We find no
correlation between the equivalent widths of Mg II and Lyman alpha emission.
The Mg II emission has a broader range of velocities than do the nebular
emission line profiles; the Mg II emission is redshifted with respect to
systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted.
The reddest components of Mg II and Lyman alpha emission have tails to 500-600
km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman
alpha equivalent widths, the differing velocity profiles, and the high ratios
of Mg II to nebular line fluxes together suggest that the bulk of Mg II
emission does not ultimately arise as nebular line emission, but may instead be
reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure
Influence of lithophysal geometry on the uniaxial compression of tuff-like rock
The purpose of this report is to summarize the work and present conclusions of Project Activity Task ORD-FY04-013 conducted under Cooperative Agreement No. DEFC28- 04RW12232 between the U.S. Department of Energy and the Nevada System of Higher Education (NSHE). This document describes results of laboratory testing on analog lithophysal tuff (Hydro-StoneTB®) conducted in the Department of Civil and Environmental Engineering of the University of Nevada at Las Vegas (UNLV) from 2004 to 2006
Proof of the Formulae for the Molecular Orbitals and Energy Levels of Mobius Annulenes, Based on the Theory of Skew-Circulant Matrices
The formulae for the molecular orbitals and corresponding energy-levels that arise in a Huckel molecular-orbital (HMO) treatment of Miobius systems are derived by appeal to the theory of skew-circulant matrices. The approach adopted is analogous to that previously used to obtain the orbital energies and HMO\u27s of \u27Huckel\u27 annulenes from the theory of circulant matrices
Improving measurements of SF6 for the study of atmospheric transport and emissions
Sulfur hexafluoride (SF6) is a potent greenhouse gas and useful atmospheric tracer. Measurements of SF6 on global and regional scales are necessary to estimate emissions and to verify or examine the performance of atmospheric transport models. Typical precision for common gas chromatographic methods with electron capture detection (GC-ECD) is 1–2%. We have modified a common GC-ECD method to achieve measurement precision of 0.5% or better. Global mean SF6 measurements were used to examine changes in the growth rate of SF6 and corresponding SF6 emissions. Global emissions and mixing ratios from 2000–2008 are consistent with recently published work. More recent observations show a 10% decline in SF6 emissions in 2008–2009, which seems to coincide with a decrease in world economic output. This decline was short-lived, as the global SF6 growth rate has recently increased to near its 2007–2008 maximum value of 0.30±0.03 pmol mol−1 (ppt) yr−1 (95% C.L.)
An interactive layout exploration and optimisation method for early stage ship design
This paper presents a novel, highly interactive genetic algorithm-based layout exploration and optimisation method for generating spatial configurations of ships in the early stages of the design process. The method draws upon the principles of design-driven architecturally centred ship design processes by enabling the naval architects to make important decisions in a hybrid design process. The method utilises a genetic algorithm-based optimisation tool to rapidly generate and evaluate a diverse set of general arrangement options. It is approached in stages where each stage comprises two
steps (manual and automatic). The new genetic algorithm-based layout optimisation tool is demonstrated by being applied to an Offshore Patrol Vessel test case. The advantages and disadvantages of the proposed tool are discussed, as well as the current limitations of the
overall approach and future work
The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MEGaSaURA) I: The Sample and the Spectra
We introduce Project MEGaSaURA: The Magellan Evolution of Galaxies
Spectroscopic and Ultraviolet Reference Atlas. MEGaSaURA comprises
medium-resolution, rest-frame ultraviolet spectroscopy of N=15 bright
gravitationally lensed galaxies at redshifts of 1.68z3.6, obtained with
the MagE spectrograph on the Magellan telescopes. The spectra cover the
observed-frame wavelength range \AA ; the average
spectral resolving power is R=3300. The median spectrum has a signal-to-noise
ratio of per resolution element at 5000 \AA . As such, the MEGaSaURA
spectra have superior signal-to-noise-ratio and wavelength coverage compared to
what COS/HST provides for starburst galaxies in the local universe. This paper
describes the sample, the observations, and the data reduction. We compare the
measured redshifts for the stars, the ionized gas as traced by nebular lines,
and the neutral gas as traced by absorption lines; we find the expected bulk
outflow of the neutral gas, and no systemic offset between the redshifts
measured from nebular lines and the redshifts measured from the stellar
continuum. We provide the MEGaSaURA spectra to the astronomical community
through a data release.Comment: Resubmitted to AAS Journals. Data release will accompany journal
publication. v2 addresses minor comments from refere
Experimental Study of an Inclined Jet-In-Cross-Flow Interacting with a Vortex Generator
An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice
Inclined Jet in Crossflow Interacting with a Vortex Generator
An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 < J < 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice
Experimentation and modelling of near field explosions
Repeatable experimental results and numerical work has shown that using the Jones-Wilkins-Lee (JWL) equation of
state (EOS) will give very accurate results of peak pressures and impulse delivered to a rigid target at large scaled
distances. However, recent experiments/numerical modelling at small scaled distances show that the JWL will overpredict
peak pressures and impulse due to the assumption of (near) instantaneous energy release from detonation.
The results of this experimental/numerical study are presented herein. In the experimental work PE4 spheres at two
different scaled distances have been tested using an array of Hopkinson Pressure Bars (HPB) at specific points on a
rigid target to measure the local pressure-time histories. From the HPB measurements, it appears that below certain
scaled distances there are chemical-physical mechanisms that do not have sufficient time to contribute to the energy
driving the loading mechanisms, explaining the over-prediction of the JWL. Importantly though, the experimental
results show that at very small scaled distances (0.172 m/kg1/3) the test to test percentage variation is very low
(5.1%); whilst at larger scaled distances (0.819 m/kg1/3) it is much higher (23.1%). This paper presents a model
which describes the process by which experimental results move from repeatable to variable to repeatable as scaled
distance increases from the extreme near field to far field
- …