510 research outputs found

    Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei

    Full text link
    A semi-microscopic approach based on both the continum-random-phase-approximation (CRPA) method and a phenomenological treatment of the spreading effect is extended and applied to describe the main properties (particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. Abilities of the approach are checked by description of gross properties of the main-tone resonances. Calculation results obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.

    Shuttle Mechanism for Charge Transfer in Coulomb Blockade Nanostructures

    Full text link
    Room-temperature Coulomb blockade of charge transport through composite nanostructures containing organic inter-links has recently been observed. A pronounced charging effect in combination with the softness of the molecular links implies that charge transfer gives rise to a significant deformation of these structures. For a simple model system containing one nanoscale metallic cluster connected by molecular links to two bulk metallic electrodes we show that self-excitation of periodic cluster oscillations in conjunction with sequential processes of cluster charging and decharging appears for a sufficiently large bias voltage. This new `electron shuttle' mechanism of discrete charge transfer gives rise to a current through the nanostructure, which is proportional to the cluster vibration frequency.Comment: 4 pages, 4 figure

    Far-infrared induced current in a ballistic channel -- potential barrier structure

    Full text link
    We consider electron transport in a ballistic multi-mode channel structure in the presence of a transversely polarized far-infrared (FIR) field. The channel structure consists of a long resonance region connected to an adiabatic widening with a potential barrier at the end. At frequencies that match the mode energy separation in the resonance region we find distinct peaks in the photocurrent, caused by Rabi oscillations in the mode population. For an experimental situation in which the width of the channel is tunable via gates, we propose a method for reconstructing the spectrum of propagating modes, without having to use a tunable FIR source. With this method the change in the spectrum as the gate voltage is varied can be monitored.Comment: Submitted to Phys. Rev.

    Phonon relaxation of subgap levels in superconducting quantum point contacts

    Full text link
    Superconducting quantum point contacts are known to possess two subgap states per each propagating mode. In this note we compute the low-temperature relaxation rate of the upper subgap state into the lower one with the emission of an acoustic phonon. If the reflection in the contact is small, the relaxation time may become much longer than the characteristic lifetime of a bulk quasiparticle.Comment: REVTeX, 4 page

    Homological algebra for osp(1/2n)

    Full text link
    We discuss several topics of homological algebra for the Lie superalgebra osp(1|2n). First we focus on Bott-Kostant cohomology, which yields classical results although the cohomology is not given by the kernel of the Kostant quabla operator. Based on this cohomology we can derive strong Bernstein-Gelfand-Gelfand resolutions for finite dimensional osp(1|2n)-modules. Then we state the Bott-Borel-Weil theorem which follows immediately from the Bott-Kostant cohomology by using the Peter-Weyl theorem for osp(1|2n). Finally we calculate the projective dimension of irreducible and Verma modules in the category O

    Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs

    Get PDF
    We provide formulas for the denominator and superdenominator of a basic classical type Lie superalgebra for any set of positive roots. We establish a connection between certain sets of positive roots and the theory of reductive dual pairs of real Lie groups. As an application of our formulas, we recover the Theta correspondence for compact dual pairs. Along the way we give an explicit description of the real forms of basic classical type Lie superalgebras.Comment: Latex, 75 pages. Minor corrections. Final version, to appear in the Japanese Journal of Mathematic

    Electromechanical instability in suspended carbon nanotubes

    Full text link
    We have theoretically investigated electromechanical properties of freely suspended carbon nanotubes when a current is injected into the tubes using a scanning tunneling microscope. We show that a shuttle-like electromechanical instability can occur if the bias voltage exceeds a dissipation-dependent threshold value. An instability results in large amplitude vibrations of the carbon nanotube bending mode, which modify the current-voltage characteristics of the system

    Isoscalar Giant Dipole Resonance and Nuclear Matter Incompressibility Coefficient

    Get PDF
    We present results of microscopic calculations of the strength function, S(E), and alpha-particle excitation cross sections sigma(E) for the isoscalar giant dipole resonance (ISGDR). An accurate and a general method to eliminate the contributions of spurious state mixing is presented and used in the calculations. Our results provide a resolution to the long standing problem that the nuclear matter incompressibility coefficient, K, deduced from sigma(E) data for the ISGDR is significantly smaller than that deduced from data for the isoscalar giant monopole resonance (ISGMR).Comment: 4 pages using revtex 3.0, 3 postscript figures created by Mathematica 4.

    Charge and Spin Effects in Mesoscopic Josephson Junctions

    Get PDF
    We consider the charge and spin effects in low dimensional superconducting weak links. The first part of the review deals with the effects of electron-electron interaction in Superconductor/Luttinger liquid/Superconductor junctions. The experimental realization of this mesoscopic hybrid system can be the individual single wall carbon nanotube that bridges the gap between two bulk superconductors. The dc Josephson current through a Luttinger liquid in the limits of perfectly and poorly transmitting junctions is evaluated. The relationship between the Josephson effect in a long SNS junction and the Casimir effect is discussed. In the second part of the paper we review the recent results concerning the influence of the Zeeman and Rashba interactions on the thermodynamical properties of ballistic S/QW/S junction fabricated in two dimensional electron gas. It is shown that in magnetically controlled junction there are conditions for resonant Cooper pair transition which results in giant supercurrent through a tunnel junction and a giant magnetic response of a multichannel SNS junction. The supercurrent induced by the joint action of the Zeeman and Rashba interactions in 1D quantum wires connected to bulk superconductors is predicted.Comment: 36 pages, 8 figures; minor changes in reference
    corecore