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We consider the charge and spin effects in low dimensional superconducting weak links. The first
part of the review deals with the effects of electron—electron interaction in Superconduc-
tor/Luttinger liquid/Superconductor junctions. The experimental realization of this mesoscopic hy-
brid system can be the individual single wall carbon nanotube that bridges the gap between two bulk
superconductors. The dc Josephson current through a Luttinger liquid is evaluated in the limits of per-
fectly and poorly transmitting junctions. The relationship between the Josephson effect in a long SNS
junction and the Casimir effect is discussed. In the second part of the paper we review the recent re-
sults concerning the influence of the Zeeman and Rashba interactions on the thermodynamical proper-
ties of ballistic S–QW–S junction fabricated in two dimensional electron gas. It is shown that in mag-
netically controlled junction there are conditions for resonant Cooper pair transition which results in
giant supercurrent through a tunnel junction and a giant magnetic response of a multichannel SNS
junction. The supercurrent induced by the joint action of the Zeeman and Rashba interactions in 1D
quantum wires connected to bulk superconductors is predicted.
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1. Introduction

Since the discovery of superconductivity in 1911 this
amazing macroscopic quantum phenomena has influ-
enced modern solid state physics more then any other
fundamental discovery in the 20th century. The mere
fact that five Nobel prizes already have been awarded
for discoveries directly connected to superconductivity
indicates the worldwide recognition of the exceptional
role superconductivity plays in physics.

Both at the early stages of the field development and
later on, research in basic superconductivity brought
surprises. One of the most fundamental discoveries
made in superconductivity was the Josephson effect
[1]. In 1962 Josephson predicted that when two super-
conductors are put into contact via an insulating layer
(SIS junction) then (i) a dc supercurrent J Jc� sin�
(Jc is the critical current, � is the superconducting
phase difference) flows through the junction in equilib-
rium (dc Josephson effect) and (ii) an alternating cur-
rent ( , ,� � �� �J Jt eV/2 � where V is the bias volt-
age) appears when a voltage is applied across the
junction (ac Josephson effect). A year latter both the
dc and the ac Josephson effect were observed in experi-
ments [2,3]. An important contribution to the experi-
mental proof of the Josephson effect has been made by
Yanson, Svistunov, and Dmitrenko [4], who were the
first to observe rf-radiation from the voltage biased
contact and who measured the temperature dependence
of the critical Josephson current J Tc( ).

As a matter of fact the discovery of the Josephson
effect gave birth to a new and unexpected direction in
superconductivity, namely, the superconductivity of
weak links (weak superconductivity, see, e.g., Ref. 5).
It soon became clear that any normal metal layer be-
tween superconductors (say, an SNS junction) will
support a supercurrent as long as the phase coherence
in the normal part of the device is preserved. Using
the modern physical language one can say that the
physics of superconducting weak links turned out to
be part of mesoscopic physics.

During the last decade the field of mesoscopic
physics has been the subject of an extraordinary
growth and development. This was mainly caused by
the recent advances in fabrication technology and by
the discovery of principally new types of mesoscopic
systems such as carbon nanotubes (see, e.g., Ref. 6).

For our purposes metallic single wall carbon
nanotubes (SWNT) are of primary interest since they
are strictly one-dimensional conductors. It was experi-
mentally demonstrated [7–9] (see also Ref. 10) that
electron transport along metallic individual SWNT at
the low bias voltage regime is ballistic. At first glance
this observation looks surprising. For a long time it was
known (see Ref. 11) that 1D metals are unstable with

respect to the Peierls phase transition, which opens up a
gap in the electron spectrum at the Fermi level. In car-
bon nanotubes the electron—phonon coupling for con-
ducting electrons is very weak while the Coulomb corre-
lations are strong. The theory of metallic carbon
nanotubes [12,13] shows that at temperatures outside
the mK-range the individual SWNT has to demonstrate
the properties of a two channel, spin-1/2 Luttinger liq-
uid (LL). This theoretical prediction was soon con-
firmed by transport measurements on metal-SWNT and
SWNT–SWNT junctions [14,15] (see also Ref. 16,
where the photoemission measurements on a SWNT
were interpreted as a direct observation of LL state in
carbon nanotubes). Both theory and experiments re-
vealed strong electron—electron correlations in SWNTs.

Undoped individual SWNT is not intrinsically a
superconducting material. Intrinsic superconductivity
was observed only in ropes of SWNT (see Refs. 17 and
18). Here we consider the proximity-induced super-
conductivity in a LL wire coupled to superconductors
(SLLS). The experimental realization of SLLS junc-
tion could be an individual SWNT, which bridges the
gap between two bulk superconductors [19,20].

The dc Josephson current through a LL junction
was evaluated for the first time in Ref. 21. In this pa-
per a tunnel junction was considered in the geometry
(see subsection 2.2.), which is very suitable for theo-
retical calculations but probably difficult to realize in
an experiment. It was shown that the Coulomb corre-
lations in a LL wire strongly suppress the critical
Josephson current. The opposite limit — a perfectly
transmitting SLLS junction was studied in Ref. 22,
where it was demonstrated by a direct calculation of
the dc Josephson current that the interaction does not
renormalize the supercurrent in a fully transparent
(D � 1, D is the junction transparency) junction. In
subsection 2.2. we re-derive and explain these results
using the boundary Hamiltonian method [23].

The physics of quantum wires is not reduced to the
investigations of SWNTs. Quantum wires can be fab-
ricated in a two-dimensional electron gas (2DEG) by
using various experimental methods. Some of them
(e.g., the split-gate technique) originate from the end
of 80’s when the first transport experiments with a
quantum point contact (QPC) revealed unexpected
properties of quantized electron ballistic transport
(see, e.g., Ref. 24). In subsection 2.1. we briefly re-
view the results concerning the quantization of the
critical supercurrent in a QPC.

In quantum wires formed in a 2DEG the elec-
tron—electron interaction is less pronounced [25]
than in SWNTs (presumably due to the screening ef-
fects of nearby bulk metallic electrodes). The electron
transport in these systems can in many cases be
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successfully described by Fermi liquid theory. For
noninteracting quasiparticles the supercurrent in a
SNS ballistic junction is carried by Andreev levels.
For a long (L v / LF�� ��0 � �, is the junction
length, � is the superconducting energy gap) perfectly
transmitting junction the Andreev–Kulik spectrum
[26] for quasiparticle energies E �� � is a set of equi-
distant levels. In subsection 2.3. we show that this
spectrum corresponds to twisted periodic boundary
conditions for chiral ( right- and left-moving) electron
fields and calculate the thermodynamic potential of an
SNS junction using field theoretical methods. In this
approach there is a close connection between the
Josephson effect and the Casimir effect.

In Section 3 of our review we consider the spin effects
in ballistic Josephson junctions. As is well-known, the
electron spin does not influence the physics of standard
SIS or SNS junctions. Spin effects become significant for
SFS junctions (here «F» denotes a magnetic material)
or when spin-dependent scattering on magnetic impuri-
ties is considered. As a rule, magnetic impurities tend to
suppress the critical current in Josephson junction by
inducing spin-flip processes [27,28]. Another system
where spin effects play an important role is a quantum
dot (QD). Intriguing new physics appears in normal
and superconducting charge transport through a QD at
very low temperatures when the Kondo physics starts
to play a crucial role in the electron dynamics. Last
year a vast literature was devoted to these problems.

Here we discuss the spin effects in a ballistic SNS
junction in the presence of: (i) the Zeeman splitting
due to a local magnetic field acting only on the normal
part of the junction, and (ii) strong spin-orbit
interaction, which is known to exist in quantum
heterostructures due to the asymmetry of the electrical
confining potential [29]. It is shown in subsection 3.1.
that in magnetically controlled single barrier junction
there are conditions when superconductivity in the leads
strongly enhances electron transport, so that a giant crit-
ical Josephson current appears J Dc ~ . The effect is
due to resonant electron transport through de Gen-
nes–Saint–James energy levels split by tunneling.

The joint action of Zeeman splitting and supercon-
ductivity (see subsection 3.2.) results in yet another
unexpected effect — a giant magnetic response,
M N B~ �	 , (M is the magnetization, N� is the num-
ber of transverse channels of the wire, 	B is the Bohr
magneton) of a multichannel quantum wire coupled to
superconductors [30]. This effect can be understood in
terms of the Andreev level structure which gives rise
to an additional (superconductivity-induced) contri-
bution to the magnetization of the junction. The
magnetization peaks at special values of the supercon-
ducting phase difference when the Andreev energy

levels at E Z
 � 
� , (� Z is the Zeeman energy split-
ting) become 2N� -fold degenerate.

The last two subsections of Sec. 3 deal with the in-
fluence of the Rashba effect on the transport proper-
ties of quasi-1D quantum wires. Strong spin—orbit
(SO) interaction experienced by 2D electrons in hete-
rostructures in the presence of additional lateral con-
finement results in a dispersion asymmetry of the elec-
tron spectrum in a quantum wire and in a strong
correlation between the direction of electron motion
along the wire (right/left) and the electron spin
projection [31,32].

The chiral properties of electrons in a quantum wire
cause nontrivial effects when the wire is coupled to
bulk superconductors. In particular, in subsection 3.4.
we show that the Zeeman splitting in a S–QW–S
junction induces an anomalous supercurrent, that is a
Josephson current that persists even at zero phase dif-
ference between the superconducting banks.

In Conclusion we once more emphasize the new fea-
tures of the Josephson current in ballistic mesoscopic
structures and briefly discuss the novel effects, which
could appear in an ac Josephson current through an ul-
tra-small superconducting quantum dot.

2. Josephson current through
a superconductor—quantum wire—superconductor

junction

In this chapter we consider the Josephson current in a
quantum wire coupled to bulk superconductors. One
could expect that the conducting properties of this sys-
tem strongly depend on the quality of the electrical con-
tacts between the QW and the superconductors. The
normal conductance of a QW coupled to electron reser-
voirs in Fermi liquid theory is determined by the trans-
mission properties of the wire (see, e.g., Ref. 33). For
the ballistic case the transmission coefficient of the sys-
tem in the general situation of nonresonant electron
transport depends only on the transparencies of the po-
tential barriers which characterize the electrical contacts
and does not depend on the length L of the wire. As al-
ready was mentioned in the Introduction, the Coulomb
interaction in a long 1D (or few transverse channel)
QW is strong enough to convert the conduction elec-
trons in the wire into a Luttinger liquid. Then the barri-
ers at the interfaces between QW and electron reservoirs
are strongly renormalized by electron—electron interac-
tion and the conductance of the N–QW–N junction at
low temperature strongly depends on the wire length
[34]. For a long junction and repulsive electron—elec-
tron interaction the current through the system is
strongly suppressed. The only exception is the case of
perfect (adiabatic) contacts when the backscattering of
electrons at the interfaces is negligibly (exponentially)
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small. In the absence of electron backscattering the con-
ductance G is not renormalized by interaction [35] and
coincides with the conductance quantumG e /h� 2 2 (per
channel). From the theory of Luttinger liquids it is also
known [36] that for a strong repulsive interaction the
resonant transition of electrons through a double-barrier
structure is absent even for symmetric barriers.

The well-known results for the transport properties
of 1D Luttinger liquid listed above (see, e.g., Rev.
37) allows us to consider two cases when studing bal-
listic S–QW–S junctions: (i) a transparent junction
( )D � 1 , and (ii) a tunnel junction ( )D �� 1 . These
two limiting cases are sufficient to describe the most
significant physical effects in S–QW–S junctions.

2.1. Quantization of the Josephson current in a
short ballistic junction

At first we consider a short L �� �0; ballistic
S–QW–S junction. One of the realizations of this
mesoscopic device is a quantum point contact (QPC)
in a 2DEG (see Fig. 1,a). For a QPC the screening of
the Coulomb interaction is qualitatively the same as in
a pure 2D geometry and one can evaluate the
Josephson current through the constriction in a
noninteracting electron model. Then due to Andreev
backscattering of quasiparticles at the SN interfaces, a
set of Andreev levels is formed in the normal part of
the junction [26]. In a single mode short junction the
spectrum of bound states takes the form [38]
(L/�0 0� )

E D /
 � 
 �� 1 22sin )
� (1)

where � is the superconducting phase difference. This
spectrum does not depend on the Fermi velocity and
therefore the Andreev levels, Eq.(1), in a junction
with N� transverse channels are 2N� degenerate (the
factor 2 is due to spin degeneracy).

It is well known (see, e.g., Refs. 39 and 40) that
the continuum spectrum in the limit L/�0 0� does
not contribute to the Josephson current,

J
e

�
�

�

�
��

, (2)

where � is the thermodynamic potential. It is evident
from Eqs. (1) and (2) that the Josephson current
through a QPC (D � 1) is quantized [39]. At low tem-
peratures (T �� �) we have [39]

J N
e

� �
�
�

sin
�

2
. (3)

This effect� is the analog of the famous conductance
quantization in OPCs (see Ref. 41).

Now let us imagine that the geometry of the con-
striction allows one to treat the QPC as a 1D quantum
wire of finite length L smoothly connected to bulk su-
perconductors (Fig. 1,b). The 1D wire is still much
shorter that the coherence length �0. How does the
weakly screened Coulomb interaction in a 1D QW in-
fluence the Josephson current in a fully transmitting
(D � 1) junction? Notice that the charge is freely
transported through the junction since the real elec-
trons are not backscattered by the adiabatic constric-
tion [42]. So, it is reasonable to assume that the Cou-
lomb interaction in this case does not influence the
Josephson current at all. We will prove this assump-
tion for the case of a long junction in the next section.
If the QW is separated from the leads by potential
barriers (quite a natural situation in a real experi-
ment) the charging effects have to be taken into ac-
count. As a rule the Coulomb correlations, which tend
to keep the number of electrons in the normal region
(quantum dot in our case) constant, suppress the criti-
cal supercurrent due to the Coulomb blockade effect
(see, e.g., Ref. 43, where a consistent theory of the
Coulomb blockade of Josephson tunneling was devel-
oped). They can also change the �-dependence of the
Josephson current. One possible scenario for how
charging effects influence the Josephson current in a
short SNS junction is considered in Ref. 44.

2.2. Luttinger liquid wire coupled
to superconductors

A consistent theory of electron—electron interac-
tions effects in weak superconductivity has been devel-
oped for a long 1D or quasi-1D SNS junction, when the
normal region can be modelled by a Luttinger liquid
(LL). The standard approach to this problem (see, e.g.,
Ref. 23) is to use for the description of electron trans-
port through the normal region the LL Hamiltonian
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Fig. 1. A schematic display of a superconducting point con-
tact (a). Quantum wire adiabatically connected to bulk
superconductors (b).

� It was recently observed in: T. Bauch et al., Supercurrent and Conductance Quantization in Superconducting Quantum
Point Contact, cond-mat/0405205, May 11, 2004.



with boundary conditions which take into account the
Andreev [45] and normal backscattering of
quasiparticles at the NS interfaces.

The LL Hamiltonian HLL expressed in terms of
charge density operators ~

,�R/L /� � of right/left mo-
ving electrons with up/down spin projection takes
the form (see, e.g., Ref. 46)

H dx uLL R L R L
� � � � �� � � � �
� � � � �� [ (~ ~ ~ ~ )2 2 2 2

� � � � �� � � � � � � � � �
V

R R L L R L R L R L
0

�
� � � � � � � � � �

�
(~ ~ ~ ~ ~ ~ ~ ~ ~ ~ � � �

~ ~ )] ,� �R L (4)

whereV0 is the strength of electron—electron interac-
tion (V e0

2~ ) and the velocity u v V /F� � 0 2��. The
charge density operators of the chiral ( )R/L fields
obey anomalous Kac–Moody commutation relations
(see, e.g., Ref. 46)

[~ ( ), ~ ( )]( ) ( )� �R L j R L kx x� �

� 

�
�

� � � � �
�

�
�

jk

i x
x x j k

2
( ), , , .

The Hamiltonian (4) is quadratic and can easily be
diagonalized by a Bogoliubov transformation

H dx v vLL
d

R L R L
( ) [ ( ) ( )],� � � ��� � � � �� � � � � ��

2 2 2 2

(5)

where v� �( ) are the velocities of noninteracting
bosonic modes (plasmons), v v /gF� � � �( ) ( )� , and

g
V

v
g

F

/

� ��
� �
�

�
��

�

�
�� �
�

1
2

10
1 2

�
, . (6)

Here g� and g� are the correlation parameters of a
spin-1/2 LL in the charge ( )� and spin ( )� sectors.
Notice that g� �� 1 for a strongly interacting
( )V vF0 �� � electron system.

The Andreev and normal backscattering of quasi-
particles at the NS boundaries (x � 0 and x L� ) can
be represented by the effective boundary Hamiltonian
H H HB B

A
B
N� �( ) ( )

HB
A

B
l

R L R L
( ) ( )[ ( ) ( ) ( ) ( )]� � �� � � �� � � � �0 0 0 0

� � �� � � �� � � � �B
r

R L R LL L L L( )[ ( ) ( ) ( ) ( )] .,h. c

(7)

H VB
N

B
l

j
j

j
( ) ( ) †

,

( ) ( )� � � ��
�

�0 0

�  V L LB
r

j
j

j
( ) †

,

( ) ( )� ��
�

� , (8)

where j L R� � � �( , ), ( , )� . Here � B
l r( , ) is the effective

boundary pairing potential at the left (right) NS
interface and VB

l r( , ) is the effective boundary scatter-
ing potential. The values of these potentials are re-
lated to the phase of the superconducting order pa-
rameters in the banks and to the normal scattering
properties at the left and right interfaces. They can be
considered either as input parameters (see, e.g., Ref.
47) or they can be calculated by using some particular
model of the interfaces [23]. In what follows we will
consider two limiting cases: (i) poorly transmitting
interfaces VB

l r( , ) � ! (tunnel junction) and (ii) per-
fectly transmitting interfaces VB

l r( , ) � 0.
At first we relate the effective boundary pairing poten-

tials � B
l r( , ) to the amplitudes rA

l r( , ) of the Andreev back-
scattering process [48,49]. Let us consider for example
the Andreev backscattering of an electron at the left in-
terface. This process can be described as the annihilation
of two electrons with opposite momenta and spin
projections at x � 0. The corresponding Hamiltonian is
h r a aA A

l
p p~ ( )
, ,

"
� � � , or equivalently in the coordinate

representation h rA A
l

R L~ ( ) ( ) ( )"
� �� �0 0 . Here rA is the

amplitude of Andreev backscattering at the left interface,

r
t i /

t r
A
l

l
l

l l

( )
( )

( ) ( )

| | exp[ ( )]

| | | |
,�

�

�

2

4 2

2

4

� �
(9)
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t l( ) is the transmission amplitude (| | | |( ) ( )t rl l2 2 1� � )
and � l is the phase of superconducting order parame-
ter at the left bank. An analogous expression holds
for the right interface. Notice that for a tunnel junc-
tion | |( , )t l r �� 1 the amplitude of Andreev backscatte-
ring is small — it is proportional to the transparency
D tl r

l r
,

( , )| |# ��2 1 of the barrier at the right (left)
interface. So in our model the effective boundary
pairing potential is

� �B
l

F A
l

B
r

F A
rC v r C v r( ) ( ) ( ) ( ), ,� � �" "

� � (10)

where C is a numerical factor which will be specified
later.

2.2.1. Tunnel junction. For poorly transmitting in-
terfaces Dr l, �� 1 the amplitude of Andreev backscat-
tering is small and we can use perturbation theory

when evaluating the phase dependent part of the
ground state energy. In second order perturbation the-
ory the ground state energy takes the form

� �E
j H

E E

B
A

jj

( )

( )

( )2

2

0

0
�

� �

�
� 

� � �
!

�
1

0 0 0

0
�

d H HB
A

B
A$ $( )† ( )( ) ( ) . (11)

Here HB
A( )( )$ is the boundary Hamiltonian (7) in the

imaginary time Heisenberg representation. After sub-
stituting Eq. (7) into Eq. (11) we get the following
formula for �E( )2 expressed in terms of electron corre-
lation functions

� �E C v r rF A
l

A
r( ) ( ) ( )( ) Re(2 24� � "

� d L LR L L R
$ $ $

0

0 0 0 0
!

� � � �� � � � � � % � �[ ( , ) ( , ) ( , ) ( , ) ]† †� � � � . (12)

We will calculate the electron correlation function
by making use of the bosonization technique. The
standard bosonisation formula reads

� &' � '( �
�

' �, ( , ) exp[ ( , )] ,x t
a

i x t�
1

2
4 (13)

where a is the cutoff parameter ( )~a F) , ' �
� # �( , ) ( , ),R L 1 1 � � � � # �( , ) ( , )1 1 . The chiral bosonic
fields in Eq. (13) are represented as follows (see,
e.g., Ref. 51)

& *' � ' � � ' ��
'

�, , ,( , ) � � ( , ).x t
x vt

L
x t� �

�
�

1
2

(14)

Here the zero mode operators � , �
,�' � �* obey the stan-

dard commutation relations for «coordinate» and «mo-
mentum» [� , � ], ,� '�' � � � �* � �� �i . They are introduced
for a finite length LL to restore correct canonical com-
mutation relations for bosonic fields [50,51]. Notice
that the topological modes associated with these opera-
tors fully determine the Josephson current in a transpar-
ent (D � 1) SLLS junction [22]. The nontopological
components �' �, ( , )x t of the chiral scalar fields are rep-
resented by the series

� '' �, ( , ) {exp[ ( )] � }x t
qL

iq x vt b
q

q� � � 1

2
h.c. ,

(15)

where � ( � )†b bq q are the standard bosonic annihilation
(creation) operator; L is the length of the junction, v
is the velocity.

It is convenient here to introduce [46] the charge ( )�
and spin (�) bosonic fields � +� �, , which are related to
above defined chiral fields�' �, by simple linear equation

�

+
� � � ��

�

�

�
��

�

�
�� � 
 �� � � �

1

2
( )R L R L� (16)

(the upper sign corresponds to �� and the lower sign
denotes +�). After straightforward transformations
Eq. (12) takes the form

� � � $ $ $

,

E C v D dF
( )

(( ) cos [ ( ) )]2 24� �
!

� ��� * * , (17)

where D D Dl r� �� 1 is the junction transparency and

*

�� �� � �� �( ) ( ) exp { [ ( , )$ � � � $ �� �2 22 2a L

� �� � �� 
 �� � �� 
+ $ + + $ �� � � �( , ) ( , )L L


 �� � �� 
� $ + $� �( , ) ]} ( )L Q . (18)
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perconductors by side electrodes.



Here � � + +� � � �# #( , ), ( , )0 0 0 0 and the double brac-
kets �� ��� denote the subtraction of the correspond-
ing vacuum average at the points ( , ) ( , )$ x � 0 0 . Note
that the superconducting properties of a LL are deter-
mined by the correlators of +� and �� bosonic fields

unlike the normal conducting properties where the
fields +� and �� play a dominant role.
The factors Q
 ( )$ originate from the contribution of
zero modes,

Q
iv

L
vF


 � � � �� � � 
 � �
-
.
/

0
1
2

( ) exp [ � � ( � � )] exp($
� $

�
2

2* * * * F /L$ ). (19)

With the help of a Bogoliubov transformation the
chiral bosonic fields in Eq. (16) can be expressed in
terms of noninteracting plasmonic modes with known
propagators (see, e.g., Ref. 46). Two different geome-
tries of SLLS junction have been considered in the lit-
erature, viz, an effectively infinite LL connected by
the side electrodes to bulk superconductors [21] (see
Fig. 3) and a finite LL wire coupled via tunnel barri-
ers to superconductors [47,52]. Notice, that both
model geometries can be related to realistic contacts
of a single wall carbon nanotube with metals (see,
e.g., Ref. 53 and references therein). The geometry of
Fig. 3 could model the junction when electron beam
lithography is first used to define the leads and then
ropes of SWSN are deposited on top of the leads. A
tunnel junction of the type schematically shown in
Fig. 4 is produced when the contacts are applied over
the nanotube rope.

The topological excitations for an effectively infi-
nite LL ( )L� ! play no role and the corresponding
contributions can be omitted in Eqs. (15) and (18),
Q
 #( ) .$ 1 The propagators of noninteracting chiral
bosonic fields are (see, e.g., [46])

�� �� � �
�

� �
�

�R/L j R/L k
jk kt x

a x s t

a, ,( , ) ln ,
4

�
(20)

where j k, ,� 12 and the plasmonic velocities s v1 � �,
s v vF2 � �� (see Eq.(6)). Finally the expression for
the Josephson current through a «side-contacted» LL
(Fig. 3) takes the form [21]

J J R gLL
i

c i
( ) ( ) ( )sin� 0

� �, (21)

where J Dev / L C/c F
( ) ( )( )0 4� � is the critical Josephson

current for noninteracting electrons, R gi ( )� is the inter-
action induced renormalization factor ( ( ) )R gi � � �1 1
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Here g� is the correlation parameter of a spin-1/2 LL
in the charge sector Eq. (6), 3( )x is the gamma func-
tion and F z( , ; ; )4 5 6 is the hypergeometric function
(see, e.g., Ref. 54). For the first time the expression
for R gi ( )� in the integral form was derived in Ref. 21.
In the limit of strong interaction V / vF0 1� �� the
renormalization factor is small

R g
v

V
a
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F
/ V / vF
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�
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�
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2
1

0

3 2 2 0
�

�
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(23)

and the Josephson current through the SLLS junction is
strongly suppressed. This is nothing but a manifestation
of the Kane–Fisher effect [34] in the Josephson current.

To evaluate the correlation function, Eq. (18), for a
LL wire of finite length coupled to bulk superconductors
via tunnel barriers, (Fig. 4), we at first have to formu-
late boundary conditions for the electron wave function

� � �� � �( ) exp( ) ( ) exp( ) ( ), ,x ik x x ik x xF R F L� � � ,

� � � � (24)

at the interfaces x L� 0, . To zeroth order of perturba-
tion theory in the barrier transparencies the electrons
are confined to the normal region. So the particle cur-
rent J i x� � �~ Re( )� �" � through the interfaces is
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Fig. 4. A Luttinger liquid wire of length L coupled to bulk
superconductors via tunnel barriers with transparencies Dl r( ).



zero. For a single mode LL this requirement is equiva-
lent to the following boundary condition for the
chiral fermionic fields [50,52]

� � � �R R x L L L x Lx x x x, , , , , ,( ) ( )| ( ) ( )|� � � �
"

�
"

��0 0 . (25)

These boundary conditions (LL with open ends)
result in zero eigenvalues of the «momentum»-like
zero mode operator �*� and in the quantization of
nontopological modes on a ring with circumference 2L
(see Ref. 50). In this case the plasmon propagators
take the form

�� �� �� �L j RL kt x, ,( , )

� �
� 
 � ��

�

�

�
jk ki x s t ia

a/L4

1
ln

exp[ ( )]
. (26)

Using Eqs. (2), (17)–(19), and (26) one readily gets
the expression for the Josephson current analogous to
Eq. (21) J J R gLL

f
c f

( ) ( ) ( )sin� 0
� �, where now the crit-

ical Josephson current of noninteracting electron is
J Dev / L C/c F

( ) ( )( )0 4� � and the renormalization
factor (R gf ( )� � �1 1) reads
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(27)

Comparing Jc
( )0 with the well known formula for the

critical Josephson current in a low transparency
SINIS junction (see, e.g., Ref. 40) we find the nu-
merical constant C � �.

In the limit g� �� 1 of strong interaction Eq. (27)
is reduced to the simple formula

R g
v

V
a
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F
V / vF

( ) .�

�� �
�� �

�
�

�

�
� ��1

2
1

0

2 2 0
�

�
�

(28)

The dependence of the renormalization factor given
by Eqs. (22), (27) on the strength of the elect-
ron—electron interaction V / vF0 � is shown in Fig. 5.
The behavior of the Josephson current as a function of
the interaction strength is similar for the two consid-
ered geometries. However we see that the interaction
influences the supercurrent more strongly for the case
of «end-coupled» LL wire.

2.2.2. Transparent junction. The case of perfectly
transmitting interfaces in terms of the boundary
Hamiltonians (7), (8) which formally correspond to the
limit VB � 0 and not small � B . It cannot be treated
perturbatively. Physically it means that charge is freely
transported through the junction and only pure Andreev
reflection takes place at the NS boundaries. It is well
known that at energies much smaller than the supercon-
ducting gap (E �� �) the scattering amplitude of
quasiparticles becomes energy independent (see Eq.
(9)). This enable one to represent the Andreev scatter-
ing process as a boundary condition for a real space
fermion operator. It was shown in Ref. 22 that the corre-
sponding boundary condition for chiral fermion fields
takes the form of a twisted periodic boundary condition
over the interval 2L,

� �L/R L/Rx L t i x t, ,( , ) exp( ) ( , )
 

 � 
� �72 (29)

(the upper sign corresponds to the left-moving fer-
mions, lower sign — to right moving particles),
where 7 � �� � , � is the superconducting phase
difference and the phase � is acquired due to the
Andreev reflection on two interfaces (see, e.g., Eq.
(9)). So the problem can be mapped [22] to the one
for the persistent current of chiral fermions on a ring
of circumference 2L. It is well known [51,55] (see
also the Rev. 56) that the persistent current in a per-
fect ring (without impurities) in the continuum
model does not depend on the electron—electron in-
teraction due to the translational invariance of the
problem. This «no-renormalization» theorem allows
us to conclude that the Josephson current in a per-
fectly transmitting SLLS junction coincides with the
supercurrent in a one-dimensional long SNS ballistic
junction [26,57]
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Fig. 5. Dependence of the renormalization factor Ri f( ) on
the dimensionless electron—electron interaction strength
V / vF0 � . Curve 1 corresponds to the case of «side-coupled»
LL wire (i), curve 2 to an «end-coupled» LL wire (f).
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where T is the temperature and � L Fv /L� � . The for-
mal proof of this statement [22] consist in evaluating
the partition function of the LL with the twisted
boundary conditions, Eq. (29), supplemented by a
connection between the �R,� and �L,� fields that fol-
lows from the chiral symmetry. The superconducting
phase difference � couples only to zero modes of the
charge current field +� . In a Galilelian invariant sys-
tem zero modes are not renormalized by the interaction
and the partition function for a SLLS junction exactly
coincides with the one for a long SNS junction.

We notice here that Eq. (30) holds not only for per-
fectly transmitting interfaces. It also describes asym-
ptotically at T �� � the Josephson current through a
tunnel junction when the interaction in the wire is as-
sumed to be attractive. We have seen already in the
previous subsection that the electron—electron interac-
tion renormalizies the bare transparency of the junction
due to the Kane–Fisher effect. The renormalization is
known to suppress the electron current for a repulsive
interaction and to enhance it for an attractive forces
[34]. So one could expect that for an attractive inter-
action the electron interface scattering will be re-
normalized at low temperatures to perfect Andreev
scattering [23].

2.3. Josephson current and the Casimir effect

More then fifty years ago Casimir predicted [58] the
existence of small quantum forces between grounded
metallic plates in vacuum. This force (a kind of van der
Waals force between neutral objects) arises due to a
change of the vacuum energy (zero-point fluctuations)
induced by the boundary conditions imposed by the
metallic plates on the fluctuating electromagnetic
fields (see Refs. 59 and 60). This force has been mea-
sured (see, e.g., one of the recent experiments [61] and
the references therein) and in quantum field theory the
Casimir effect is considered as the most spectacular
manifestation of zero-point energy. In a general situa-
tion the shift of the vacuum energy of fluctuating
fields in a constrained volume is usually called the
Casimir energy EC. For a field with zero rest mass di-
mensional considerations result in a simple behavior of
the Casimir energy as a function of geometrical size.
In 1D, E v/LC ~ � where v is the velocity. Now we
will show that the Josephson current in a long SNS
junction from a field-theoretical point of view can be
considered as a manifestation of the Casimir effect.
Namely, the Andreev boundary condition changes the
energy of the «Fermi sea» of quasiparticles in the nor-

mal region. This results in the appearance of: (i) an
additional cohesive force between the superconduct-
ing banks [30], and (ii) a supercurrent induced by the
superconducting phase difference.

As a simple example we evaluate the Josephson cur-
rent in a long transparent 1D SNS junction by using a
field theoretical approach. Andreev scattering at the
NS interfaces results in twisted periodic boundary
conditions, Eq. (26), for the chiral fermion fields
[51]. So the problem is reduced to the evaluation of
the Casimir energy for chiral fermions on an S1 mani-
fold of circumference 2L with «flux» 7. Notice that
the left- and right-moving quasiparticles feel opposite
(in sign) «flux» (see Eq. (29)). The energy spectrum
takes the form (�L Fv /L� � )

E L nn L, ( , ) ,' � � '
�

�
� � ��

�
�

�

�
��

1
2 2

n � 
 
 � 
0 1 2 1, , ,..., ,' (31)

and coincides (as it should be) with the electron and
hole energies calculated by matching the quasi-
particle wave functions at the NS boundaries [26].
The Casimir energy is defined as the shift of the
vacuum energy induced by the boundary conditions

E L E L E LC n
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Notice, that the factor (–1/2) in Eq. (32) is due to
the zero-point energy of chiral fermions, the addi-
tional factor of 2 is due to spin degeneracy. Both sums
in Eq. (32) diverge and one needs a certain regular-
ization procedure to manipulate them. One of the
most efficient regularization methods in the calcula-
tion of vacuum energies is the so-called generalized
zeta-function regularization [62]. For the simple en-
ergy spectrum, Eq. (31), this procedure is reduced to
the analytical continuation of the infinite sum over n
in Eq. (32) to the complex plane,

E n aC L
s

s

n

( ) lim ( )
,
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'

� � � �
��

�

��! �


!

 �
1

1
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 � > >
'

' ' '� L a a a[ ( , ) ( , ) ],
1

1 1 (33)

where >( , )s a is the generalized Riemann >-function
[54] and a /' � '� �� �( ) 2 . Using an expression for
>( , )�n a in terms of Bernoulli polynomials that is
well-known from textbooks (see Ref. 54) one gets the
desired formula for the Casimir energy of a 1D SNS
junction as
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The Casimir force FC and the Josephson current J at
T � 0 are
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the expression for the Josephson current coincides
with the zero-temperature limit of Eq. (30). The gen-
eralization of the calculation method to finite temper-
atures is straightforward. The additional cohesive
force between two bulk metals induced by supercon-
ductivity is discussed in Ref. 30. In this paper it was
shown that for a multichannel SNS junction this force
can be measured in modified AFM-STM experiments,
where force oscillations in nanowires were observed.

The calculation of the Casimir energy for a system of
interacting electrons is a much more sophisticated
problem. In Ref. 47 this energy and the corresponding
Josephson current were analytically calculated for a
special exactly solvable case of double-boundary LL.
Unfortunately the considered case corresponds to the
attractive regime of LLs (g� � 2 in our notation, see
Eq. (6)) and the interesting results obtained in Ref. 47
can not be applied for electron transport in quantum
wires fabricated in 2DEG or in individual SWNTs were
the electron—electron interaction is known to be
repulsive.

3. The effects of Zeeman splitting
and spin—orbit interaction in SNS junctions

In the previous Section we considered the influence
of electron—electron interactions on the Josephson
current in a S–QW–S junction. Although all calcula-
tions were performed for a spin-1/2 Luttinger liquid
model, it is readily seen that the spin degrees of free-
dom in the absence of a magnetic field are trivially in-
volved in the quantum dynamics of our system. In es-
sence, they do not change the results obtained for
spinless particles. For noninteracting electrons spin
only leads to an additional statistical factor 2 (spin de-
generacy) in the thermodynamic quantities. At the
first glance spin effects could manifest themselves in
SLLS junctions since it is known that in LL the phe-
nomena of spin-charge separation takes a place [46].
One could naively expect some manifestations of this
nontrivial spin dynamics in the Josephson current.
Spin effects for interacting electrons are indeed not re-
duced to the appearance of statistical factor. How-
ever, as we have seen already in the previous sections,
the dependence of the critical Josephson current on

the interaction strength is qualitatively the same for
spin-1/2 and spinless Luttinger liquids. So it is for
ease of calculations a common practice to investigate
weak superconductivity in the model of spinless
Luttinger liquid [47].

Spin effects in the Josephson current become impor-
tant in the presence of a magnetic field, spin—orbit in-
teractions or spin—dependent scattering on impurities.
At first we consider the effects induced by a magnetic
field. Generally speaking a magnetic field influences
both the normal part of the junction and the supercon-
ducting banks. It is the last impact that determines the
critical Josephson current in short and wide junctions.
The corresponding problem was solved many years ago
and one can find the analytical results for a short and
wide junction in a magnetic field parallel to the NS in-
terface (e.g., in Refs. 63 and 64).

In this review we are interested in the supercon-
ducting properties of junctions formed by a long bal-
listic quantum wire coupled to bulk superconductors.
We will assume that a magnetic field is applied lo-
cally, i.e., only to the normal part of the junction
(such an experiment could be realized for instance
with the help of a magnetic tip and a scanning tunnel-
ing microscope). In this case the only influence of the
magnetic field on the electron dynamics in a single
channel (or few channel) QW is due to the Zeeman in-
teraction. For noninteracting electrons the Zeeman
splitting lifts the double degeneracy of Andreev levels
in an SNS junction and results in a periodic depend-
ence of the critical Josephson current on magnetic
field [65].

Interaction effects can easily be taken into account
for a 1D SLLS junction in a magnetic field by using
bosonization techniques. The term in the Hamiltonian
�HZ, which describes the interaction of the magnetic

field B with the electron spin S( )x is in bosonized
form (see, e.g., Ref. 46)

� ( ), ( )H g B dx S x S xZ f B z z z x� � � ��	
�

��
1

2
,(36)

where gf is the g-factor, 	B is the Bohr magneton and
the scalar field �� is defined in Eq. (16). As is easy to
see, this interaction can be transformed away in the LL
Hamiltonian by a coordinate-dependent shift of the spin
bosonic field � � �� �@ � � z Fx/ v� 2 , � z f Bg B� 	
is the Zeeman splitting. So the Zeeman splitting intro-
duces an extra x-dependent phase factor in the chiral
components of the fermion fields and thus the Zeeman
interaction can be readily taken into account [66] by a
slight change of the bosonization formula (13)

A A' � ' � ' �,
( )

, ,( , ) exp( ) ( , ),Z x t iK x x t�
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The phase factor appearing in Eq. (37) results in a peri-
odic dependence of the Josephson current on magnetic
field. In the presence of Zeeman splitting the critical
current, say, for a tunnel SLLS junction, Eq. (21), ac-
quires an additional harmonic factor cos( )� �Z L/ , the
same as for noninteracting particles.

3.1. Giant critical current in a magnetically
controlled tunnel junction

Interesting physics for low-transparency junctions
appears when resonant electron tunneling occurs. In
this subsection we consider the special situation when
the conditions for resonant tunneling through a junc-
tion are induced by superconductivity. The device we
have in mind is an SNINS ballistic junction formed in
a 2DEG with a tunable tunnel barrier («I») and a
tunable Zeeman splitting which can be provided for
instance with the help of a magnetic tip and a scan-
ning tunneling microscope (STM). In quantum wires
fabricated in 2DEG the effects of electron—electron
interactions are not pronounced and we will neglect
them in what follows.

Resonant electron tunneling through a double bar-
rier mesoscopic structure is a well studied quantum
phenomenon, which has numerous applications in
solid state physics. Recently a manifestation of reso-
nant tunneling in the persistent current both in super-
conducting [67] and in normal systems [68] was stud-
ied. In these papers a double-barrier system was
formed by the two tunnel barriers at the NS interfaces
[67] or in a normal metal ring [68]. It was shown that
for resonance conditions (realized for a special set of
junction lengths [67] or interbarrier distances [68]) a
giant persistent current appears which is of the same
order of magnitude as the persistent current in a sys-
tem with only a single barrier. In the case of the SINIS
junction considered in Ref. 67 the critical supercurrent
was found to be proportional to D. Notice that the
normal transmission coefficient for a symmetric dou-
ble-barrier structure (i.e., the structure with normal
leads) at resonance conditions does not depend on the
barrier transparency at all. It means that for the hy-
brid structure considered in Ref. 67 the superconduc-
tivity actually suppresses electron transport.

Now we show [69] that in a magnetically con-
trolled single barrier SFIFS junction («F» denotes the
region with nonzero Zeeman splitting) there are con-
ditions when superconductivity in the leads strongly
enhances electron transport. Namely, the proposed hy-
brid SFIFS structure is characterized by a giant criti-

cal current J Dc ~ . While the normal conductanceG
is proportional to D.

For a single barrier SFIFS junction of length L,
where the barrier is located at a distance l L�� mea-
sured from the left bank, the spectrum of Andreev lev-
els is determined from the transcendental equation [69]

cos cos cos ,
2 2

0
2

E
R

E
DZ

L

Z

L l



�



� �

�

�

�

�

�
� (38)

where � x Fv /x� � and D R� � 1, � Z is the Zeeman
splitting. In the limit � Z � 0 Eq. (38) is reduced to a
well-known spectral equation for Andreev levels in a
long ballistic SNS junction with a single barrier
[40,70].

At first we consider the symmetric single-barrier
junction, i.e., the case when the scattering barrier is
situated in the middle of the normal region l L/� 2.
Then the second cosine term in the spectral equation is
equal to one and Eq. (38) is reduced to a much simpler
equation which is easily solved analytically. The eval-
uation of the Josephson current shows [69] that for
D �� 1 and for a discrete set of Zeeman splittings,

� �Z
k

Lk k� � ��( ) , , , , ... ,2 1 0 1 2 (39)

the resonance Josephson current (of order D) is de-
veloped. At T � 0 it takes the form

J
ev

L
D

/
r

F( )
sin

| sin( )|
.�

�

�
�

2
(40)

This expression has the typical form of a resonant
Josephson current associated with the contribution of
a single Andreev level [40]. One can interpret this
result as follows. Let us assume for a moment that the
potential barrier in a symmetric SNINS junction is in-
finite. Then the system breaks up into two identical
INS-hybrid structures. In each of the two systems de
Gennes–Saint-James energy levels with spacing 2�� L
are formed [71]. For a finite barrier these levels are
split due to tunneling with characteristic splitting en-
ergy � ~ D L� . The split levels being localized al-
ready on the whole length L between the two su-
perconductors are nothing but the Andreev–Kulik
energy levels, i.e., they depend on the superconduct-
ing phase difference. Although the partial current of a
single level is large (~ D) (see Refs. 40 and 67), the
current carried by a pair of split levels is small (~ D)
due to a partial cancellation. At T � 0 all levels above
the Fermi energy are empty and all levels below EF
are filled. So in a system without Zeeman splitting
the partial cancellation of currents carried by pairs of
tunnel—split energy levels results in a small critical
current (~ D). The Zeeman splitting � Z of order � L
(see Eq. (39)) shifts two sets («spin-up» and
«spin-down») of Andreev levels so that the Fermi en-
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ergy lies in between the split levels. Now at T � 0
only the lower state is occupied and this results in an
uncompensated large (~ D) Josephson current.
Since the quantized electron-hole spectrum is formed
by Andreev scattering at the NS interfaces, the
resonance structure for a single barrier junction
disappears when the leads are in the normal (non-
superconducting) state. So, the electron transport
through the normal region is enhanced by supercon-
ductivity. Electron spin effects (Zeeman splitting)
are crucial for the generation of a giant Josephson
current in a single barrier junction.

The described resonant transport can occur not
only in symmetric junction. For a given value of
Zeeman splitting � Z

k( ) from Eq. (39) there is a set of
points [69] (determined by their coordinates xm

k( )

counted from the middle of the junction)

x
m

k
Lm

k( ) � 

�2 1

(41)

(m is the integer in the interval 0 1 2? ? �m k / ),
where a barrier still supports resonant transport. The
temperature dependence of the giant Josephson cur-
rent is determined by the energy scale � ~ D L� and
therefore at temperatures T ~ �, which are much
lower then � L, all resonance effects are washed out.

3.2. Giant magnetic response of a quantum wire
coupled to superconductors

It is known that the proximity effect produced in a
wire by superconducting electrodes strongly enhances
the normal conductance of the wire for certain value
of the superconducting phase difference (giant con-
ductance oscillations [72]). For ballistic electron
transport this effect has a simple physical explanation
[73] in terms of Andreev levels. Consider a multichan-
nel ballistic wire perfectly (without normal electron
backscattering) coupled to bulk superconductors. The
wire is assumed to be connected to normal leads via
tunnel contacts. In the first approximation one can ne-
glect the electron leakage through the contacts and
then the normal part of the considered Andreev
interferometer is described by a set of Andreev levels
produced by superconducting mirrors . When the dis-
tance L between the mirrors is much longer then the
superconducting coherence length L v /F�� ��0 � �
(� is the superconducting gap), the spectrum takes a
simple form [26]
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n nn

j F
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 � 
 

�

2
2 1 0 1 2� � (42)

where vF
j( ) is the Fermi velocity of the jth transverse

channel (j N� �1 2, , ..., ). It is evident from Eq. (42)
that at special values of phase difference � n �

� �� ( )2 1n energy levels belonging to different trans-
verse channels j, collapse to a single multi-degenerate
(N� ) level exactly at the Fermi energy. So resonant
normal electron transport through a multichannel
wire (the situation which is possible for symmetric
barriers in the normal contacts) will be strongly
enhanced at � �� n . The finite transparency of the
barriers results in a broadening and a shift of the
Andreev levels. These effects lead to a broadening of
the resonance peaks in giant conductance oscillations
at low temperatures [73].

Magnetic properties of a quantum wire coupled to
superconductors can also demonstrate a behavior analo-
gous to the giant conductance oscillations. We consider
a long perfectly transmitting SNS junction in a local
(applied only to the normal region) magnetic field. In
this case the only influence of the magnetic field on the
Andreev level structure is through the Zeeman cou-
pling. The thermodynamic potential � A B( , )� calcu-
lated for Zeeman-split Andreev levels is [30]

�
�

A

k
j

L
j

kj

B T
k

k k

kT/
( , )

( ) cos cos

sinh( )( )
{

�
� B

�
�

�

�

!

 4
1

21}

.
N�

 (43)

Here B 	j Z L
j

Z B/ g B� �� � �( ), is the Zeeman ener-
gy splitting, � L

j
F
jv /L( ) ( )� � and vF

j( ) is the Fermi ve-
locity in the jth transverse channel, { }j is the set of
transverse quantum numbers. In Ref. 30 the normal
part of the SNS junction was modelled by a cylinder of
length L and cross-section area S V/L� . Hard-wall
boundary conditions for the electron wave function on
the cylinder surface were assumed. Then the set { }j is
determined by the quantum numbers (l n, ) that label
the zeroes 6

l n,
of the Bessel function Jl l n( ),6 � 0 and

the velocity vF
l n( , ) takes the form

v
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2
2

C 6
�
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(44)

It is evident from Eq. (43) that the superconductiv-
ity-induced magnetization

M
B

BA
A� �

�

�

� ( , )�
(45)

at high temperatures (T L�� � ) is exponentially
small and does not contribute to the total magnetiza-
tion of the junction. At low temperatures T the mag-
netization peaks at M N gA B~ � 	 where the super-
conducting phase difference is an odd multiples of �
(see Fig. 6 which is adapted from Ref. 30). The quali-
tative explanation of this resonance behavior of the
magnetization is as follows. It is known [74] that for
� � �� # �n n( )2 1 (n is the integer) the two Andreev
levels E /A Z

( )
 � 
� 2 become 2N� -fold degenerate.
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At T � 0 the filled state EA
( )� dominates in the mag-

netization at � �� n since at other values of supercon-
ducting phase the sets of Andreev levels corresponding
to different transverse channels contribute to magneti-
zation Eqs. (43), (45) with different periods in «mag-
netic phase» B j (i.e., in general, incoherently) and
their contributions partially cancel each other. Notice
also that for a fixed volume V, the number of trans-
verse channels N� has a step-like dependence on the
wire diameter. So at resonance values of the phase dif-
ference � �� n one can expect a step-like behavior of
the magnetization as a function of wire diameter [30].
This effect is a magnetic analog of the Josephson cur-
rent quantization in a short SNS junction [39] consid-
ered in Sec. 2.1.

3.3. Rashba effect and chiral electrons
in quantum wires

Another type of system where spin is nontrivially
involved in the quantum dynamics of electrons are
conducting structures with strong spin—orbit interac-
tion. It has been known for a long time [29] that the SO
interaction in the 2DEG formed in a GaAs/AlGaAs in-
version layer is strong due to the structural inversion
asymmetry of the heterostructure. The appearance in
quantum heterostructures of an SO coupling linear in
electron momentum is now called the Rashba effect.
The Rashba interaction is described by the Hamiltonian

H i
x yso SO y x

R( )
,�

�
�

�
�
�

�

�
��

�

�
��4 � � (46)

where � x y( ) are the Pauli matrices. The strength of
the spin—orbit interaction is determined by the cou-
pling constant 4 so , which ranges in a wide interval
(1–10) D �10 10 eV D cm for different systems (see, e.g.,
Ref. 31 and references therein). Recently it was ex-

perimentally shown [75–77] that the strength of the
Rashba interaction can be controlled by a gate volt-
age 4 so GV( ). This observation makes the Rashba ef-
fect a very attractive and useful tool in spintronics.
The best known proposal based on the Rashba effect
is the spin-modulator device of Datta and Das [78].

The spin—orbit interaction lifts the spin degener-
acy of the 2DEG energy bands at p E 0 (p is the elec-
tron momentum). The Rashba interaction, Eq. (46)
produces two separate branches for «spin-up» and
«spin-down» electron states

C
4

( )p
p

| p |� 

2

2m
SO

�
. (47)

Notice that under the conditions of the Rashba effect
the electron spin lies in a 2D plane and is always per-
pendicular to the electron momentum. By the terms
«spin-up» («spin-down») we imply two opposite spin
projections at a given momentum. The spectrum (47)
does not violate left-right symmetry, that is the elec-
trons with opposite momenta (
p) have the same en-
ergy. Actually, the time reversal symmetry of the
spin—orbit interaction, Eq. (46), imposes less strict
limitations on the electron energy spectrum, namely,
C C� ��( ) ( )� �p p and thus, the Rashba interaction can
in principle break the chiral symmetry. In [31] it was
shown that in quasi-1D quantum wires formed in a
2DEG by a laterally confining potential the electron
spectrum is characterized by a dispersion asymmetry
C C� �( ) ( )� Ep p . It means that the electron spectrum
linearized near the Fermi energy is characterized by
two different Fermi velocities v F1 2( ) and, what is
more important, electrons with large (Fermi)
momenta behave as chiral particles in the sense that
in each subband (characterized by Fermi velocity vF

( )1

or vF
( )2 ) the direction of the electron motion is corre-

lated with the spin projection [31,79] (see Fig. 7). It
is natural in this case to characterize the spectrum by
the asymmetry parameter

) a
F F

F F

v v

v v
�

�

�
1 2

1 2
, (48)

which depends on the strength of Rashba interaction
) 4a SO( )� �0 0. The asymmetry parameter grows
with the increase of 4 SO and can be considered in this
model as the effective dimensional strength of the
Rashba interaction in a 1D quantum wire [31]. Notice
that the spectrum proposed in [31,79] (Fig. 7, solid
lines for spin projections) does not hold for strong SO
interactions, when ) a is not small. Spin is not con-
served in the presence of the SO interaction and the
prevailing spin projection of electron states in quasi
1D wires has to be independently calculated. It was
shown in Ref. 32 by a direct calculation of the average
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electron spin projection that for energies close to CF
the electron spin projection for strong Rashba interac-
tion (comparable with the band splitting in the confin-
ing potential) is strongly correlated with the direction
of the electron motion. Namely, the right (R)-and the
left (L)-moving electrons always have opposite spin
projections regardless of their velocities (see Fig. 7,
where the parentheses indicate the spin projection for
strong Rashba interaction). For our choice of Rashba
SO Hamiltonian, Eq. (46), R-electrons (kx � 0) will
be «down-polarized» ( � � � �� y 1) and L-electrons
( )kx � 0 will be «up-polarized» ( )� � � �� y 1 to
minimize the main part of electron energy

~ ( )�
2 2/ m � k m /x y SO� �� 4 �

2 in the presence of
strong spin—orbit interaction [32].

Chiral electrons in 1D quantum wire result in such
interesting predictions as «spin accumulation» in
normal wires [32] or Zeeman splitting induced
supercurrent in S–QW–S junction [69].

3.4. Zeeman splitting induced supercurrent

It was shown in the previous subsection that under
the conditions of the Rashba effect in 1D quantum wires
the spin degree of freedom is strongly correlated with
the electron momentum. This observation opens the pos-
sibility to magnetically control an electric current. It is
well known that in ring-shaped conductors the current
can be induced by magnetic flux due to the momentum

dependent interaction of the electromagnetic potential A
with a charged particle H e/mcint ( )� pA. Chiral prop-
erties of electrons in quasi-1D quantum wires allow one
to induce a persistent current via pure spin (momentum
independent) interaction H g B� 	 SH. Below we con-
sider the Josephson current in a ballistic S—QW—S
junction in the presence of Rashba spin—orbit interac-
tion and Zeeman splitting. We will assume at first that
SO interactions exist both in the normal part of the
junction and in the superconducting leads, so that one
can neglect the spin rotation accompanied by electron
backscattering induced by SO interactions at the NS in-
terfaces. In other words the contacts are assumed to be
fully adiabatic. This model can be justified at least for a
weak SO interaction. The energy spectrum of electrons
in a quantum wire is shown in Fig. 7 and the effect of
the SO interaction in this approach is characterized by
the dispersion asymmetry parameter ) a , Eq. (48).

For a perfectly transparent junction (D � 1) the
two subbands 1 and 2 (see Fig. 7) contribute inde-
pendently to the Andreev spectrum which is described
by two sets of levels [69]
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where the integers n m, , , ,� 
 
0 1 2 � are ordinary
quantum numbers which label the equidistant
Andreev levels in a long SNS junction [26], ' � 
1,
� L

j
jFv /L j( ) ( , )� �� 1 2 and � is the superconducting

phase difference. The magnetic phases B j Z L
j/� � �( )

characterize the shift of Andreev energy levels in-
duced by Zeeman interaction. Notice that the relative
sign between the superconducting phase � and the
magnetic phase B j is different for channels 1 and 2.
This is a direct consequence of the chiral properties of
the electrons in our model. In the absence of a disper-
sion asymmetry (v v vF F F1 2� # ) the two sets of levels
in Eq. (49) describe the ordinary spectrum of Andreev
levels in a long transparent SFS junction («F» stands
for the normal region with Zeeman splitting)
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Knowing explicitly the energy spectrum, Eq. (49), it
is straightforward to evaluate the Josephson current.
It takes the form [69]
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momentum and are classified by their Fermi velocities
(v F1 -subband 1, v F2 -subband 2). Solid line for spin pro-
jections correspond to the case of weak SO interaction;
spin in parentheses indicates the spin projections in sub-
band 1 for strong Rashba interaction.



Here T is the temperature. The formal structure of
Eq. (51) is obvious. The two sums in Eq. (51) corre-
spond to the contributions of magnetically shifted
sets of levels 1 and 2 in Eq. (49). In the absence of
any SO interaction the Zeeman splitting results only
in an additional cos( )k /Z L� � factor in the standard
formula for the supercurrent through a perfectly
transmitting long SNS junction [57]. The most strik-

ing consequence of Eq. (51) is the appearance of an
anomalous Josephson current J Jan # �( )� 0 , when
both the Zeeman splitting (� Z) and dispersion
asymmetry () a) are nonzero. At high temperatures
T L

jF �( ) the anomalous supercurrent is exponentially
small. In the low temperature regime T L

j�� �( ) it is a
piece-wise constant function of the Zeeman energy
splitting � Z,

J
e
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For rational values v /v p/qF F1 2 � (p q? are the
integers) Jan is a periodic function of the Zeeman en-
ergy splitting with period � �� �Z Lq� 2 1( ), otherwise it
is a quasiperiodic function. The dependence of the
normalized supercurrent J /Jan 0 (here J ev /LF0 � ,
v v v /F F F� �( )1 2 2) on the dimensionless Zeeman
splitting B # � �Z L/ for ) a � 01. and for different
temperatures is shown in Fig. 8. We see that at T � 0
the Zeeman splitting induced supercurrent appears
abruptly at finite values of � Z of the order of the
Andreev level spacing.

Let us imagine now the situation when the Zeeman
splitting arises due to a local magnetic field (acting
only on the normal part of the junction) in the 2D
plane applied normal to the quantum wire. Then the
vector product of this magnetic field and the electric
field (normal to the plane), which induces the Rashba
interaction determines the direction of the anomalous
supercurrent. In other words the change of the sign of
the SO interaction in Eq. (46) or the sign of � Z makes
the supercurrent Eq. (52) change sign as well.

Now we briefly discuss the case of a strong Rashba
interaction (the characteristic momentum kSO �
� m/ VSO g�4 ( ) is of the order of the Fermi momen-
tum). The electrons in a quantum wire with strong
Rashba coupling are chiral particles, that is the right-
and left-moving particles have opposite spin projec-
tions [32]. There is no reason to assume a strong SO
interaction in 3D superconducting leads. We will fol-
low the approach taken in [32,80], where the system
was modelled by a quantum wire (4 SO E 0) attached
to semi-infinite leads with 4 SO � 0. In this model the
SN interface acts as a special strong scatterer where
backscattering is accompanied by spin-flip process.
For a general nonresonant situation the dispersion
asymmetry is not important in the limit of strong
Rashba interaction and we can put v v vF F F1 2G G .

Then the Josephson current at T � 0 up to numerical
factor takes the form

J D
ev

LZ SO
F Z

L
( , ) ( ) sin .� 4 ��

�

�
G �

�

�
��

�

�
��eff (53)

Here D SOeff ( )4 �� 1 is the effective transparency
of the junction. It can be calculated by solving the
transition problem for the corresponding normal junc-
tion [32]. Anyway, in the considered model for NS
interfaces (nonadiabatic switching on the Rashba
interaction) even in the limit of strong Rashba inter-
action the anomalous supercurrent J Jan Z� �( , )� 0 �
is small because of smallness of the effective transpar-
ency of the junction. One could expect large current
only for special case of resonant transition. This prob-
lem has not yet been solved.
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4. Conclusion

The objective of our review was to discuss the quali-
tatively new features of the Josephson effect that ap-
pear in S–QW–S hybrid structures. Quantum wires are
characterized by a 1D or quasi-1D character of the elec-
tron conductivity. Electron transport along QWs is
ballistic and due to the weak screening of the Coulomb
interaction in 1D it is described by a Luttinger liquid
theory. So the first question we would like to answer
was — what is the Josephson effect in SLLS junction?
It was shown that although electrons do not propagate
in a LL weak link the supercurrent in a perfectly trans-
mitting SLLS junction exactly coincides with the one
in an SNS junction [22]. This «no renormalization»
theorem is analogous to the result known for a LL adia-
batically coupled to nonsuperconducting leads [35].
For a tunnel SILLIS junction the dc Josephson current
is described by the famous Josephson current-phase
relation, however now the effective transparency
Deff �� 1 defined as J J D� 0 eff sin� (where J0 �
� ev /LF ) strongly depends on the aspect ratio of the
LL wire d/L (d F~ ) is the width of the nanowire),
temperature and electron—electron interaction strength.
This result [21] is a manifestation of the Kane–Fisher ef-
fect [34] in mesoscopic superconductivity. It was also in-
teresting for us (and we hope for the readers as well) to
find a close connection, rooted in the Andreev boundary
conditions, between the physics of a long SNS junction
and the Casimir effect (see Sec. 2.3.).

Qualitatively new behavior of the proximity in-
duced supercurrent in nanowires is predicted for sys-
tems with strong spin—orbit interactions. The Rashba
effect in nanowires results in the appearance of chiral
electrons [31,32] for which the direction of particle
motion along the wire (right or left) is strongly corre-
lated with the electron spin projection. For chiral
electrons the supercurrent can be magnetically in-
duced via Zeeman splitting. The interplay of Zeeman,
Rashba interactions and proximity effects in quantum
wires leads to effects that are qualitatively different
from those predicted for 2D junctions [81].

It is worth-while to mention here another impor-
tant trend in mesoscopic superconductivity, namely,
the fabrication and investigation of superconductiv-
ity-based qubits. Among different suggestions and
projects in this rapidly developing field, the creation
of a so-called single–Cooper–box (SCPB) was a
remarkable event [82]. The SCPB consist of an
ultrasmall superconducting dot in tunneling contact
with a bulk superconductor. A gate electrode, by lift-
ing the Coulomb blockade of Cooper-pair tunneling,
allows the delocalization of a single Cooper pair be-
tween the two superconductors. For a nanoscale grain
the quantum fluctuations of the charge on the island

are suppressed due to the strong charging energy
associated with a small grain capacitance. By appro-
priately biasing the gate electrode it is possible to
make the two states on the dot, differing by one Coo-
per pair, have the same energy. This twofold degener-
acy of the ground state brings about the opportunity
to create a long-lived coherent mixture of two ground
states (qubit).

The superconducting weak link which includes a
SCPB as a tunnel element could be very sensitive to
external ac fields. This problem was studied in [83],
where the resonant microwave properties of a voltage
biased single–Cooper–pair transistor were considered.
It was shown that the quantum dynamics of the sys-
tem is strongly affected by interference between mul-
tiple microwave-induced inter-level transitions. As a
result the magnitude and the direction of the dc
Josephson current are extremely sensitive to small
variations of the bias voltage and to changes in the fre-
quency of the microwave field. This picture, which
differs qualitatively from the famous Shapiro effect
[3], is a direct manifestation of the role the strong
Coulomb correlations play in the nonequilibrium
superconducting dynamics of mesoscopic weak links.
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