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ABSTRACT. We provide formulas for the denominator and superdenominator of
a basic classical type Lie superalgebra for any set of positive roots. We establish a
connection between certain sets of positive roots and the theory of reductive dual
pairs of real Lie groups, and , as an application of these formulas, we recover the
Theta correspondence for compact dual pairs. Along the way we give an explicit
description of the real forms of basic classical type Lie superalgebras.
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1. INTRODUCTION

The Weyl denominator identity

(L.1) [Ta-e=3" sgn(w)er @

acAt weW

is one of the most intriguing combinatorial identities in the character ring of a
complex finite-dimensional simple Lie algebra. It admits far reaching generalizations
to the Kac-Moody setting, where it provides a proof for the Macdonald’s identities
(see [I1]). Its role in representation theory is well-understood, since the inverse
of the Lh.s. of (LT)) is the character of the Verma module M (0) with the highest
weight 0.

In the first part of this paper we provide a generalization of formula () to the
setting of basic classical type Lie superalgebras. Deepening this problem, we came
across an interesting connection with representation theory of Lie groups which is
the theme of the second part of the paper.

By a basic classical type Lie superalgebra we mean an almost simple finite-
dimensional Lie superalgebra g = go & g; with a non-degenerate invariant super-
symmetric bilinear form (-,-) and go reductive. Choosing a Cartan subalgebra b
of go, we get the set of roots A = Ay U Ay, where A; is the set of roots of h in
gi, 1 = 0,1. Choosing a set of positive roots A" in A, we let A = AT N A, In
trying to extend (LI]) to a Lie superalgebra g, it is natural to replace the Lh.s of
(LI) with the character of the Verma module M (0) over g, which is the inverse of

HaEAg(l - eia)
HaEAT(]‘ + 6—04)7

called the denominator. Beyond the denominator R, very important for us will be
the superdenominator, defined as

(1.2) R=

HaeAg(l - eia)
[locar(—em®)

(1.3) R=

Generalizations of formulas for R and R to affine superalgebras and their con-
nection with number theory and the theory of special functions are thoroughly
discussed in [I4]. The striking differences which make the super case very different
from the purely even one are the following. First, it is no more true that subsets of
positive roots are conjugate under the Weyl group: to get transitivity on the sets of
positive roots one has to consider Serganova’s odd reflections, see (2.5]). Moreover
the restriction of the nondegenerate invariant bilinear form (-,-) to the real span
Va of roots may be indefinite, hence isotropic sets of roots appear naturally. One
defines the defect d = def g as the dimension of a maximal isotropic subspace of
Va. A subset of A, consisting of linearly independent pairwise orthogonal isotropic
roots is called isotropic. It is known that any maximal isotropic subset of A consists
of d roots ([14]).

In this paper we settle completely the problem of finding an analogue of (I.T])
for basic classical type Lie superalgebras, by providing an expression for the r.h.s.
which incorporates the dependence on the set of positive roots. The following result
is known.
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Theorem KWG. Let g be a basic classical type Lie superalgebra and let At be
a set of positive roots such that there exists a mazximal isotropic subset S of AT,
contained in the set of simple roots corresponding to A*. Then

(1.4) e’R = Z sgn(w)w (Hﬁes(i n 6—5)> ,

weWt

(1.5) e’ R = Z sgn'(w)w <H5 S(ip_ €B)> :

weWt

In the above statement p = py — p1, where p; = %ZaeA? a, Wt is a subgroup of
the Weyl group W, of g defined in (21)) and sgn’ is defined in ([Z3]). This result
has been stated by Kac and Wakimoto in [14], and fully proved for d = 1 by using
representation theoretical methods. A combinatorial proof for arbitrary d has been
recently obtained by Gorelik [4].

Theorem KWG will be of fundamental importance for our generalization, which
is as follows: given any subset of positive roots A", we want to express e¢’R by a
formula like the r.h.s. of (IL4]), in which at the numerator appears the p correspond-
ing to A" and at the denominator a suitable maximal isotropic subset S of A, so
that the exponents at the denominator are linear combinations with non-positive
integer coefficients of simple roots: see (LI0), (LII). We also provide a formula in
which the denominator is exactly as in the r.h.s. of of (L), but we have to perform
a correction on p, depending on S: see (LIT).

Let us discuss more in detail these formulas. First we construct a certain class S
of maximal isotropic subsets by the following procedure.

Definition 1.1. Denote by S(A™) the collection of maximal isotropic subsets of A"
of the form S = S1U...US; of AT, where Sy is a non empty isotropic subset of the
set of simple roots, and, inductively, S; is such a subset in the set of indecomposable

roots of Si-, \ Si_1, where S, ={a € At | (o, ) =0V S € S;_1}.

Denote by @, Qg the lattices spanned over Z by all roots and even roots, respec-
tively, and let, for S € S(A*) and v € S

. 1 1f77 € Qo,
0 "= {—1 it €Q\ Qo
(1.7) w={eS|B<qyh v ={BeS|B <},
(1.8) M= ctv=88 =Y -8B
peys per<
(1.9) sgn(y) = (=107,

where, as usual, § < v if v — (3 is a sum of positive roots or zero and |X| stands for
the cardinality of the set X.

Theorem 1.1. Let g = go @ g1 be a basic classical type Lie superalgebra having
defect d, where g = A(d — 1,d — 1) is replaced by gl(d,d). Let AT be any set of
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positive roots. For any S € S(A™T) we have

(1.10) C-e’R= Z sgn(w)w <H7€S<1 n Egn(’y)e[m])> ’

weWy

weWy

where
Cy
II ht(y)+1°
2
vES

and Cy = |Wy/W*|. Moreover, there exists 5™ € S(AY) such that [y] € Qt =
Z. AT for any v € S™ce,

(1.12) C =

The explicit values of Cy are the following.

(

d! ifg=Am—1,n—-1),
244! if g = B(m,n),
244! if g=D(m,n), m >n
1.13 Cy = T 7
( ) ¢ 20-14! if g= D(m,n), n > m,
1 if g=C(n),
2 it g=D(2.1,a), F(4), G(3).

\

If def(g) = 1, and S € S(AT), then S consists of a single simple root. Hence
we are in the hypothesis of Theorem KWG, in which case (LI0), (TII) hold with
C = (y, and these formulas coincide with (4], (I5). Therefore we have to deal
only with Lie superalgebras of type gl(m,n), B(m,n), D(m,n), which have defect
d = min{m, n}. We also treat the case A(d —1,d — 1), see Subsection 3. 2.2

In these cases we introduce a combinatorial encoding of the elements of S(A™)
using the notion of an arc diagram (see Definition B.1]). To any arc diagram X we
associate a maximal isotropic set S(X), and in Proposition we show that this
is a bijection between all arc diagrams and S(A™).

We introduce two types of operations on arc diagrams: odd reflections r, and
interval reflections ry, . They have the following features:

(1) for any arc diagram X there exists a finite sequence of odd and interval
reflections which change X into an arc diagram X’ such that S(X’) consists
of simple roots (cf. Lemma [B.4);

eP

(2) we are able to relate ) i sgn(w)w ( ) to the similar sums

Ha,es(x)(lfef[m])
where the product in the denominator of the L.h.s ranges over r, X and over
T[U,w]X (Cf. (BE))

The above properties allow to prove formula (LLIT]) starting from Theorem KWG

applied to S(X’). In Lemma B.7 we show that formula (LI0) can be derived from

(LII). We also single out a special set of arc diagrams (see Definition B.2)) which

have the property described in the last sentence of Theorem [LTI

Further, we provide a different generalization of (LH), in which only positive
roots appear in the denominator, namely we have
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Proposition 1.2. Let S € S(A"). Then

—1 Z/y s <l P+Zq sl
(1.14) e’R = Z sgn(w)w (=1)~e < _ﬁe :
weW# Hﬁes(l +eP)

. P+ esl
(1.15) e’R = Z sgn'(w)w( c - ) :

wen s [pes =)

The main application of our formulas is a conceptually uniform derivation of the
Theta correspondence for compact dual pairs. Basic classical type Lie superalgebras
are linked to Howe theory of dual pairs through the notion of a distinguished set
of positive roots, which we introduce in Definition [£I} it requires that the depth
of the grading, which assigns value 1 (resp. 0) to each generator corresponding to
a positive odd (resp. even) simple root, does not exceed 2. The distinguished sets
of positive roots for the basic classical type Lie superalgebras (which are not Lie
algebras) are classified in Subsection [£.4]

To understand the relationship with Howe theory, consider the complex symplec-
tic space (g1, (-,-)), where (-,-) = (-,-)q,- A choice of a set of positive roots A*

determines a polarization g, = g ©g;, where g7 = @ g.. Hence we can consider
ozeAli

the Weyl algebra W (g;) of (g1, (-,-)) and construct the W (g;)-module

(1.16) M2 (g1) = W(g1)/W (g1)a!,

with action by left multiplication. The module M2 (g;) is also a sp(gy, (-,-))~
module with 7" € sp(gy, (-, )) acting by left multiplication by

(1.17) 0(T)=—= Y T(x;)a,

i=1

where {z;} is any basis of g; and {2’} is its dual basis w.r.t. (-,-), L.e. (z;,27) = §;;.
It is easy to check that, in W(g;), relation

(1.18) 0(T), x] = T(x)
holds for any = € g;. This implies that we have an h-module isomorphism
(1.19) M (1) = S(g7) ©C-,
where S(g; ) is the symmetric algebra of g;, and C_,, is the 1-dimensional h-module
with highest weight —p;. Hence the h-character of M2 (gy) is given by
e m
I_IOJEA;L (1 - eia) .
Since adg, (g0) C sp(g1, (-, -)), we obtain an action of gy on M"(g;). Upon mul-
tiplication by e HaeAg(l — ¢~ ) the r.h.s. of (L20) becomes e”R and equating it

to our formula we obtain the go-character of M2 (g;).
So far we have not used the special features of distinguished sets of positive roots
AT, Restricting to distinguished sets of positive roots A™ for Lie superalgebras

(1.20) chM™" (gy) =
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of type gl(m,n), B(m,n), D(m,n), we are able to build up a real form V of g,
endowed with a standard symplectic basis {€q, fa},e NG such that

P Clea = V-1f) =gt

aeAf

It turns out that sp(V') N ad)g, (go) = 51 X $2, §;, = 1,2, being the Lie algebras of
a compact dual pair in Sp(V'). As stated in Proposition .8 distinguished sets of
positive roots turn out to correspond in this way to all compact dual pairs. Howe
theory and our denominator formula allow to recover the explicit computation of
the Theta correspondence done by Kashiwara-Vergne [I5] and Li-Paul-Tan-Zhu [17]
and related results by Enright [2]. Before discovering formula (LI0), we used this
argument the other way around, to deduce the denominator identities from the
knowledge of the Theta correspondence: the relevant details are given in [13].

In Section we show that relaxing the condition on the depth of the grading
which defines the distinguished sets of positive roots it is possible to generalize the
previous approach to all but one noncompact type I dual pairs (cf. Proposition
[12). We plan to investigate in a subsequent paper if our methods can be pushed
further to obtain information on the Theta correspondence in these cases too.

In conclusion of the paper we use our superdenominator formula to confirm the
validity of the Kac-Wakimoto conjecture [14] for the natural representations of the
classical Lie superalgebras. We intend to extend this method to a large class of
representations in a subsequent publication.

The paper is organized as follows. In Section 2] we collect some basic notation and
definitions. In Section Bl we develop the combinatorial machinery needed to prove
our superdenominator formulas: we introduce arc diagrams and study the effect of
odd and interval reflection on arc diagrams. We finally prove the superdenominator
formula for the non-exceptional basic classical type Lie superalgebras and also prove
the denominator formula. The final subsection is devoted to the proof of formula
(CIH). In Section [ we relate the distinguished sets of positive roots to Howe theory:
after a preliminary discussion on Cartan involutions we introduce and analyze the
definition of distinguished set of positive roots. Then we relate distinguished sets of
positive roots to real forms: as a byproduct of our analysis we obtain a conceptual
proof of the classification of real forms of basic classical type Lie superalgebras which
is in the same spirit as the classification of simple Lie algebra involutions, given in
[T1]. This classification has been previously obtained by Kac, Parker and Serganova,
(cf. [9], [18], [21]). Finally we provide a concise discussion about certain sets of
positive roots related to noncompact dual pairs. In the follwoing four Sections we
deduce from our denominator formula the explicit form of the Theta correspondence
for all compact dual pairs. It is worthwhile to note that the pair (O(2m), Sp(2n,R))
has additional complications which require to use a version of the character formula
for disconnected compact groups due to Kostant [16]. In Section @ we prove the
Kac-Wakimoto conjecture for the natural representation.

The ground field is C throughout the paper, unless otherwise specified.

2. SETUP

In this section we collect some notation and definitions which will be constantly
used throughout the paper. Let g be a basic classical type Lie superalgebra. This
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means that g = go@ g, is an almost simple finite-dimensional Lie superalgebra with
reductive gy and that g admits a nondegenerate invariant supersymmetric bilinear
form (-,-). Almost simple means that [g, g] modulo its center is simple. Super-
symmetric means that (go,g1) = 0 and the restriction of (-,-) to go (resp. g1) is
symmetric (resp. skewsymmetric). A complete list of the simple ones consists of
four series A(m,n), B(m,n), C(n), D(m,n) and three exceptional Lie superalge-
bras D(2,1,«), F(4), G(3), and the non-simple ones are obtained by adding to a
simple one or to gl(n+1,n+1) a central ideal. These Lie superalgebras can be con-
structed, starting with a Cartan matrix, like simple finite-dimensional Lie algebras,
though inequivalent Cartan matrices may correspond to the same algebra (see [9]).

Choose a Cartan subalgebra h C go, and let A, Ay, A; C b* be the set of roots,
even roots, odd roots, respectively. Let W, C GL(h*) be the group generated by
the reflections s, w.r.t. even roots a € Ag. Choose a set of positive roots AT C A
and set A = A; N AT, i=0,1. Let IT be the set of simple roots corresponding to
the choice of AT, i.e. the set of indecomposable roots in A™. Set also, as usual, for
1=0,1, p; = %Zaeaj a, p=po— p1. From time to time we will write p(A™) or
p(IT) to emphasize the dependence of p from the choice of the set of positive roots.

Next, recall the notation skipped in the Introduction. Let Y be the dual Coxeter
number of g, i.e. 2h" is the eigenvalue of the Casimir operator of (g, (-,-)) in the
adjoint representation. If h¥ # 0 (which holds unless g is of type A(n,n), D(n+1,n)
or D(2,1,q)), we let [14]

AP ={ae Ay | h(a,a) >0},

(2.1) W= (s5 € Wy | B € A),

We refer to [14, Remark 1.1, b)] for the definition of W# when h" = 0. Set
(2.2) No={aeAy|Liad A} Ay ={a e A | (a,a) =0}
Finally, for w € W, set

(2.3) sgn(w) = (1)), sgn’(w) = (~1)™,

where £ is the usual length function on Wy and m is the number of reflections from

A;r occurring in an expression of w. Note that
w (e’ R) = sgn/(w) e’ R.

In particular, sgn’ is well-defined. Note also that sgn = sgn’ in types A and D.
Let now recall the definition of odd reflections [19]: for an isotropic root o € II
we define

(2.4) ra(AT) = (AT \ {a}) U {—a}.

It is easy to prove that r,(A™) is a set of positive roots for g and that if we set
a+p if (o, 8) #0

(25) TOé(B) = ﬁ lf (aaﬁ) = 07 o 7£ ﬁ
—« if =«

for 5 € 11, then r,(I1) = {r,(5) | B € I1} is the corresponding set of simple roots.
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The importance of odd reflections lies in the fact that, up to Wy -action, any
two sets of positive roots can be obtained one from the other by applying a finite
sequence of odd refections. Note that, for an isotropic «,

(2.6) p(ro(AT)) = p(AT) +a,
from which one deduces that
(2.7) BN RAT) = =Pt R(ro (AY)) Va eIl

3. DENOMINATOR FORMULAS

3.1. Arc diagrams. Let g be a Lie superalgebra of type gl(m,n), B(m,n),C(m),
D(m,n). We first need an encoding of the sets of positive roots. The explicit real-
izations of these Lie superalgebras given in [9], [L0, Section 4] leads to a description
of their roots in terms of functionals €;,9; € b*.

We let

E={er,....en}t, D={01,...,0n}
if g is of type gl(m,n), B(m,n) and let
E={en, .. em1,emtorE={e, ..., €m1,—€n}, D={d,...,0n}
if g is of type C'(m) or D(m,n). Let
B=&UD.
Then B is a basis of h* (for C'(m) one has n = 1). We call two elements vy, v, € B
elements of the same type if {v,v2} C € or {v1,v2} C D and elements of different

types otherwise.
Recall the structure of A in terms of B: in type gl(m,n) we have

Ao=A{e—¢ |1 <i#j<m}pU{s—0;[1<i#j<n},

As an invariant bilinear form on gl(m,n) we choose the supertrace form (a,b) =
str(ab), str being the supertrace of a matrix in gl(m,n), so that

(€1, ¢5) = 0y = —(03, 9;).
In the other classical types see (B.1]), (6.]) for the description of roots; the invariant
bilinear form is the restriction of the supertrace form.

Given a total order > on B = {& > ... > &,,1n}, we define a set of simple roots
[1(B,>) for g as follows

g (B, >)

gl(m,n) | {& — &b

B(m,n) | {& — &} U {&nin}

C(m) 16— &bty U {26} if §n €€

{6 — & iy ULsm + Smpr ) if §n € D = {61}
D(m,n) | {& — &} U{28m4n} if Emyn € D

{& — &} U {Emana1 + &man} i &min € €.

Using Kac’s description of Borel subalgebras (see [9]), it is not difficult to prove the
following result.
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//\\/\ N

[ ] X [ ] X X [ ] [ ] X [ ]
€1 01 € Oy O3 € €4 04 €

FIGURE 1. An arc diagram X for gl(5,4).

Lemma 3.1. Up to Wy-equivalence, any set of positive roots for g has II(B,>) as
a set of simple roots for some total order > on B.

It may happen in type D(m,n) that two different choices of B give rise to the
same set of simple roots II, so we make the following choice. Let h € h be such that
a(h) =1 for each a € II. Choose B = {e1,...,6,} U{d1,...,0,} if €,(h) >0, and
B={e,...,—€,} U{d1,...,0,} if €,(h) <O.

Instead of the Dynkin diagram, we encode II(B,>) by the ordered sequence
B, which is pictorially represented as an array of dots and crosses, the former
corresponding to vertices in £ and the latter to vertices in D.

Examples for gl(5,4), D(4,3) are given in Figures 1, 2, 3 disregarding the arcs.
In the first case, we start from the total order {e; > d; > €5 > 09 > 93 > €3 > €4 >
d4 > €5}, which corresponds to the set of simple roots {€; — 1,97 — €3, €3 — 0o, 5 —
53, 53 — €3,€3 — €4,€4 — 55}

In Figure 2, we start from the total order €; > §; > €3 > 0o > €3 > 03 > €4, which
gives rise to the set of simple roots {€; —d1, 01 —€g, €2—09, 0o —€3, €3—03, d31€4 }, while
in Figure 3 the total order is €; > 01 > €3 > 0y > €3 > —€4 > 04, which corresponds
to the set of simple roots {€; — 01,01 — €2, €9 — o, 92 — €3, €3 + €4, —€4 + I3}

For v,w € B, if v > w, let [v,w] = {u € Bl v > u > w}. If B C B, we denote
by Wy the subgroup of W, consisting of (non-signed) permutations of B’ N & and
of B'N D, so that we have Wy = S;, x S}, where |B' NE| =k, |B ND|=I.

We now introduce arc diagrams. These are combinatorial data that encode some
maximal isotropic subsets of the set of positive roots.

Definition 3.1. An arc diagram is the datum consisting of the ordered sequence
of vertices representing B, and of arcs between some of the vertices, satisfying the
following properties:

(i) the vertices at the ends of each arc are of different type;

(ii) the arcs do not intersect (including the end points);

(iii) for each arc vw the interval [v,w] contains the same number of elements of
E and of D: |[v,w|NE| = |[v,w]ND|;

(iv) the number of arcs is min(m,n).

We also define the support of an arc diagram X as
Supp(X) = {v € B | v is an end of an arc in X}.

If AT is the set of positive roots corresponding to II(B, >), we denote by A(AT)
the set of arc diagrams whose underlying set of vertices is B and the underlying
total order is >.
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7N 7N 7N
° X e X e X e

€1 0y € 0y € O3 €

FIGURE 2. An arc diagram for D(4,3).

7N 7N N

[ ] X [ ] X [} [ ] X
€1 01 € 0y € —€q O3

FIGURE 3. Another arc diagram for D(4, 3).

3.1.1. The maximal isotropic set S(X). Consider an arc diagram X. It encodes the
following isotropic set of positive roots:

S(X) = {v—w| v,w € B are connected by an arc and v > w}.

For example, the arc diagram in Figure 1 encodes the isotropic subset S = {0; —
€9, €1 — 0y, 03 — €3,04 — €5 }. The arc diagram in Figure 2 encodes the isotropic subset
S = {e1 — 91,09 — €3,03 — €4}, whereas that in Figure 3 encodes the isotropic subset
SI = {61 — 51, 52 — €3, —53 — 64}.

We will often denote by AT (X), Af(X), Af(X),TI(X) the sets of positive, posi-
tive even, positive odd, and simple roots associated to the ordering of vertices of B
underlying X (the arc structure of X is irrelevant for that). One readily sees that
S(X) c AT(X) and S(X) is a basis of a maximal isotropic subspace in h* (since
the cardinality of S(X) equals the defect of g). This shows that S(X) is indeed a
maximal set of isotropic roots.

For each f € A let

snf = (B,Zei)

(that is sn(e; £0;) = 1, sn(—e; £6;) = —1). For § € S(X) one has sn § =1 (resp.,
—1) if the left end of the corresponding arc is in £ (resp., in D). For each o € S(X)

we have (cf. (L))
(3.1) [of = Z sna-snf - f,

peS(X),B<a
namely
[e—al= 2 ¢ 3 & Di—al= > &= > ¢
£€les,05]NE £€le;,0,]ND £€[d;,65]ND £€[d;,65]NE

E.g., with reference to Figure 1, we have
[er — 0] =€+ e — 61 — o, [01 — €] =01 — €.
Notice that for an arc vw the element [v — w] is Wiy w)-invariant.
3.1.2. Special arc diagrams.

Definition 3.2. We say that an arc is simple if it connects consecutive vertices.
We call an arc diagram simple if each arc is simple.

We call an arc diagram X nice if for each o, 5 € S(X) such that o < B one has
sna = snf (equivalently, if for any arc, its left end is of the same type as the left
ends of all arcs which are below this arc).



DENOMINATOR IDENTITIES FOR LIE SUPERALGEBRAS 11

One readily sees that simple diagrams correspond to the case when S(X) con-
sists of simple roots, and nice arc diagrams correspond to the case when [y] =
ZBGS(X) B<r S. In particular, for a nice arc diagram X, [v] € Q* for each v € S(X).

We denote by A™“(AT) the set of nice arc diagrams X such that AT = AT(X).

3.1.3. Euxistence of arc diagrams and of nice arc diagrams. Fix an order > on B, set
IT =TI(B, >) and let AT be the corresponding set of positive roots. Arc diagrams
can be easily constructed inductively. We start by drawing an arc between any two
consecutive vertices v, w of different types. Then we throw away these two vertices
and obtain an ordered set & U D', where the cardinality of £ (resp., of D’) is less
by one than the cardinality of £ (resp. of D). We take any arc diagram for &' UD’,
and we let ¥(X’) be the set of its arcs. Then ¥(X) = %(X’) U {vw} is the set of
arcs of an arc diagram X for B.

More generally, we can start by drawing any possible arc (i.e., the arc between
two vertices v, w of different types such that [v, w] has the same numbers of vertices
lying in £ and in D). Then we can construct an arc diagram for the sequence which
is below the arc (i.e., for [v,w] \ {v,w}) and for the ordered set B\ [v, w]|. The set
of arcs in the resulting arc diagram is the union of the sets of arcs in these two
diagrams and the arc vw. As a result, there is an arc diagram X such that 3 € A
belongs to S(X) iff the interval defined by 5 (i.e., [v, w] for 5 = v —w) contains the
same numbers of vertices lying in £ and in D.

Look now at the above procedure from an algebraic point of view: removing a
pair {u,v} of vertices of different type (or more generally a set Z = {u;,v;}¥_;
of pairs of vertices of different type) from the ordered set B gives the ordered set
corresponding to S+ \ S where S = {u — v} (resp, S = {u; —v;}_,). This is clearly
related to the procedure explained in Definition [LT. More precisely, we have

Proposition 3.2. If X is an arc diagram, then S(X) € S(A1). Viceversa, any
S € S(A") is of the form S(X) for some arc diagram X.

Proof. Both assertions follow easily from the remark in the previous paragraph after
it is proved that an arc diagram has always a simple arc. To prove this, remark
that axioms in Definition Bl imply that all vertices below a given arc are ends of
some arcs. Thus the “lowest” arcs (the ones which do not have arcs below them)
are necessarily simple. O

Let us now explain how to construct nice diagrams.
Proposition 3.3. A"(AT) #£ ().

Proof. Let € > e > ... > €, and 0; > 0y > ... > 0,. Assume that ¢, > 01,
so that our sequence Ay = B starts with €1,..., €, 07 (K > 1). We draw the arc

a; =€, and consider the sequence A; = B\ {¢,d1}. We repeat the procedure
until the first element of the sequence A,,; is not in £. Note that the right end
of the arc a; obtained in the jth step is ¢;. Let U be the union of the ends in
all arcs a;, j = 1,...,s. Let us show that U = [e1,d;]. Indeed, by the above, for
j=1,...,s the right end of a; is d; so both ends lie in [e1,d;] C [€1,d5]. Therefore
U C [e1,05]. Moreover, d1,...,0s € U so ([e1,0,] \ U) C &. Since the first element
in Agy1 = Ag \ U lies in D, we conclude that [e;,d5] = U as required. Thus the
sequence [e7, 05| with the ends of the arcs in U is a nice diagram X and each element
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//\\/\ N

® ® X X X ® [ ) X )
€1 €2 0 0y O3 € €4 € 04

FIGURE 4. 75, _,(X).

7N VRN 7N\ 27N
° X e X X e e X e

€1 01 € Oy O3 € €4 € 04

FIGURE 5. 7, 5,(X).

of this sequence is an end of an arc. Now we construct a nice diagram Y for the
sequence Agyq (which is shorter than Ay). The union of X and Y is a nice arc
diagram for the sequence A. U

3.1.4. Operations with the arc diagrams. Consider all arc diagrams on the set B
endowed by a total order and introduce the following operations.

0dd reflections r,_,,. Let v,w be two consecutive vertices of an arc diagram
X connected by an arc vw. We define r,_,(X) to be the arc diagram with v, w
switched (i.e., 7y_y(X) = (X\{ow}) U {wv}; the total order on B for r,_,(X) is
obtained from the total order for X by interchanging v and w). Figure 4 displays
75—, (X) where X is the arc diagram of Figure 1. The odd reflection on an arc
diagram corresponds to an odd reflection with respect to a simple root lying in

S(X) (cf. @24)):

I (ry-w(X)) = ruw(I1(X)),
S(rv-w(X)) = S(X)\{v —w}U{w —v}.

Notice that sna - @ = sn(—a) - (—«) and thus for v € S(X) N S(r,_,(X)) the
element [v] defined for X and for r,_,(X) is the same.

Interval reflections ri, 4,1. Suppose X has a subsequence ey, dy, ez, ds, ..., e, dy
(k > 1), where e, ..., e, are of the same type and dy, ..., d; are of another type,

with the arcs eidy,dies, daes, ..., dy_1e, . We define 7., 4,1(X) as the arc diagram
with the same total order on B, where the above arcs are substituted by the arcs

€1d1, €2d2, €3d3, e 7€kdk . Hence

S(T[elvdk](X)) -
(S(X)\{el —dk7d1—62,...,€k—dk})u{€1 _d17€2_d27"'7ek_dk}'

Figure 5 displays 7, s,)(X) where X is the arc diagram of Figure 1. Figure 6
provides further examples: the arc diagram X in the left display is not nice, since
[er—d2]) = (e1—02)— (01 —€2). The middle display represents rs, ., (X ), which is nice,
and the right display represents 7, 5,;(X), which is simple (hence, in particular,
nice). This example also shows that both odd and interval reflections are necessary
moves to change an arc diagram into a simple one. They are also sufficient, as we
show next.
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FIGURE 6.

Lemma 3.4. There exists a finite sequence of odd and interval reflections which
change any arc diagram into a simple arc diagram.

Proof. We proceed by induction on the number k£ of non-simple arcs in the arc
diagram X. If £ = 0, then X is a simple arc diagram and there is nothing to prove.

Assume k > 1 and let ed be a non-simple arc such that each arc vw, e > v > w > d

is simple. Then, necessarily, we have [e, d| = eaja)asd), . . . apa},d, with arcs ed, a;a;

;0 =1,...,h. Use the odd reflections r,, ., if necessary, to modify le,d] in such a
way that vertices of different type alternate from e to d: call the resulting diagram
X'. Then 7 4(X’) has k — 1 non-simple arcs and we are done by induction. O

3.2. Proof of Theorem [I.1l In this Section we prove formulas ([LI0), (LII). For
future applications we prove a slightly more general result (see Proposition 3.§]).

For any subset U of W, and any rational function Y with {e’ | b € B} as set of
variables, introduce the sum

(3.2) Fu(Y) = sgn(w)w(Y).
welU
We will need also the sum

(3.3) Fo(Y) =) sgn'(w)w(Y).

wel

Notation 3.1. If U is a subgroup of Wy, and W C Wy is stable under the right
action of U, then W is a union of right cosets in Wy /U. We denote by W/U a set
of representatives.

Note that
Fuw(Y) = Fuw (FoY)), Fw )= Fuw(Fu(Y)).

The formula displayed on the right follows since sgn’ : Wy — {£1} is a homomor-
phism.

Lemma 3.5. Let 1T be a set of simple roots for g = gl(k|k),k > 2, all of which are
isotropic. Let {B1, ..., Bk} C I be the mazimal isotropic subset. Then

3 1 1 — e— 2B . 1
(3.4) Fuw, ( ) = Fuw, ( :
’ Hf:Q(l_e_ﬁi) k ’ Hf1(1_6_5i))
Proof. Let A = m, To = ﬁWg(A) and for j =1,...,k let

T; = ]i“Wg (A6—51—52—---—5j)_

Then the left-hand side of formula (3.4) is equal to v — x1: LHS = xo — 7.
Write II = {e; — 61,01 — €2,...,€6, — 0} and B; = ¢ — 0;. Observe that W,
contains a subgroup permuting the 3;’s, and all elements of this subgroup are even
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(the permutations (¢ €;)(d; J;) switches 8; and 3;). Since Fyy,(A') is Wy-skew-
invariant for any rational function A’, we conclude that

(3.5) z; = Fir, (Ae” >ier %)

for any subset J C {1,2,...,k} of cardinality j. Since the permutation (& €3)
stabilizes A, one has

Fw (A]Ja=e ")) =0
i=1
for s = 2,..., k. Hence, using (3.1), we obtain that Z;:o(—l)j(;)%‘ = 0 for
s =2,...,k. We deduce by induction on j > 2 that x; = j(x; — z¢) + 2o and thus

_sk g 1— e Zizibi
LHS =g -2 = 2 _ g (e gy S L2 R g
which is (B.4)). O

For an arc diagram X we denote by px the element prx) and by Rx, Ry the
fractions R, R constructed for II(X), that is

To — Tk 1.

e - Moeago =) - Haeageot =)
HaeAj(x)(l +e ) Haeaj(x)(l —e )
Let
ht 1 PX
(3.6) Px)= [ S .
vES(X) 2 H‘/GS(X)<1 —ebl)

Corollary 3.6. Let X be an arc diagram and rp, ., be an interval reflection. For
any subset W of the Weyl group which is stable under the right action of Waypp(x)
one has

(3.7) Fw (P(X)) = Fuw (P(rjpw)(X)))-

Proof. Denote by Y the arc subdiagram corresponding to the interval [v, w] and let
Y' = 7w (Y). Then X' = 7p,,,)(X) is obtained from X by substituting ¥ by Y.
View Y, Y" as arc diagrams of gl(k, k)-type. Then G = W, is the Weyl group of
Y and of Y.

Notice that (px — py, @) = 0 for each a € II(Y') and thus px — py is G-invariant.
Since [v, w] C Supp(X), we have that WG = W. Therefore

- Fa(P(Y)))

er —PY

Fw (P(X)) = fW/G(ﬂﬁeS(X)\S(Y)(l — )

and a similar formula holds for X', Y respectively. One has S(X)\ S(Y) = S(X')\
S(Y"). Moreover, since II(Y) = II(Y’) and II(X) = II(X’), one has py = py: and
px = px. Thus formula ([B71) follows from the following equality

(3.8) Fo(P(Y)) = Fa(P(Y")),

which we now prove.

Recall that, by definition of interval reflection, the interval [v,w] is of the form
v=-e; >d; >ey>dy > ... >es > ds = w, where the e;’s are of the same type and
the d;’s are of another type. Then S(Y) = {a} U S, where a = v —w = e; — d;
and S" = {d; — e;41}:]. Since S’ C II(Y) one has [] = 3 for 3 € S’. Recall that
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[a] is G-invariant and note that py is also G-invariant (since II1(Y") consists of odd
roots). Therefore
- epY . 1

FePO) = T Fe =)

Consider the simple arc diagram Z with the order d; > ey > dy > ... > dg > ey;
then S(Z) = S’ U{—a}. Using Lemma [3.5] we obtain

v 1 1 — e Zpest Bt 1
F = F .
G(H565/<1 - 676>) 5 G(Hﬁes(z)<1 - 675))

Observe that s = Mot — ht(v;w)ﬂ and [af = a=) 5.4 B = pz—py. Summarizing,
we obtain

. 1 — eled | 1
Fo(P(Y)) = e ———Fg )
. 1 .
= _epsz —CRzepZ,

(HBGS(Z)(l - e_ﬁ)) B
where the last equality follows from (ILH) (because Z is a simple arc diagram). Since
S(Y") c II(Y"), Theorem KWG gives also Fi(P(Y')) = CRyefv'.

Since II(Z) corresponds to the total order di > ey > dy > ... > ds > e; and

II(Y") corresponds to the total order e; > dy > ey > dy > ... > dg, one has
I(Z) =7re—q, - Tey—esTer—a, (IL(Y”)). Using (BI0) we get

Ry/ePY’ = (—1)2371326pz = —Rzepz.
This establishes ([B.8) and completes the proof. O

To complete the proof of Theorem [Tl we will need the following observation.
Lemma 3.7. Formula ([LIQO) follows from (LITI).

Proof. Fix any set of positive roots A" and let II be the associated set of sim-
ple roots. Take h € b such that a(h) = 0 if @ € II N Ay and a(h) = 1 if
a € IINA;. Then a(h) = 0 mod 2 if @« € Ay and a(h) = 1 mod 2 if a €
Ay, We claim that F(e®) = eV~ 1Mex changes (LII) to (LIO). Let k =
e™=1r(h) - Then, obviously, F(e?) = ke?, so we have F(e’R) = ke’R. We need

only to check that F(e¥(?)) = k;gs':—/((lz)))ew(p). First of all observe that F(w(e’R)) =
sgn'(w)F(e?R) = sgn/(w)ke’R. On the other hand this equals F(e“®wR) =

(ewgp)) (wR). Since w permutes the roots of the same parity, we have that
F(wR) = w(F(R)) and in turn F(e*®)F(wR) = F(e*®)w(F(R)). It follows that
(

F(e?®yR) = emV=Twe) M ewe)yy(R) = V=10 M sgn(w)e’ R. Hence
eV OW sgn(w) = ksgn' (w),
and this relation implies our claim. (l

We are finally ready to give the proof of Theorem [LLI} in the current setting,
formula (CIT]) becomes

(3.9) Fw,(P(X)) = Cye’X Rx.

By Lemma 3.4} any arc diagram can be transformed to a simple one by a sequence
of odd and interval reflections. By Theorem KWG, Fy, (P(X)) = CyRxefx if X
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is a simple diagram. For any odd reflection 7, of II one has p, ay = pn + o (cf.
[24)), and so
(3.10) el R, 11 = —ePMRyy.

Since for v € S(X) one has P(re (X)) = —P(X), the fraction Fyy, (P(X))/(Rxerx)
is not changed by the action of r,. The interval reflections do not change RxefX,
since they do not change I1(X); moreover, applying Corollary with W = W,
they do not change Fyy,(P(X)). This proves formula (), hence (LII). Lemma

B implies that (ILI0) also holds. By choosing X to be a nice arc diagram, we have
that [v] € Q" for any v € S(X). This concludes the proof of Theorem [Tl

3.2.1. For future applications we will need a slightly stronger version of Theorem
LI Given an arc diagram X, let B’ be a subset of B containing Supp(X). Let
A(B') be the set of roots that are linear combinations of the simple roots that are
in the span of B’. Assume for simplicity that A(B') is irreducible and let A*(B')
be the irreducible component of Ay(5B’) which is not the smallest one in the sense
of [ Section 1.2]. Let W(B') and W*#(B') be the corresponding Weyl groups.
Clearly Wy W#(B') is a subgroup of W(B') and let T' = (WzW*#(B'))\W (B'). Set
Z =Wy /W(B') and Wy = ZWWH(B') so that W, = W,T.

Proposition 3.8.
(3.11) Fwy(P(X)) = —2ePX Ry.

Proof. Recall that any arc diagram can be transformed into a simple arc diagram
by a sequence of odd and interval reflections. Note that these reflections permute
the ends of arcs and do not change the positions of other vertices (the interval
reflections do not change the order of vertices and the odd reflections permute two
vertices connected by an arc). Thus these reflections do not change B’ and Supp(X).
Since WoWsupp(x) = Wo, we can argue as in the proof of Theorem [L1] and assume
that X is simple. Let Y be the same arc diagram viewed as a diagram for A(B').
Then, since (px — py, @) = 0 for any simple root of A(B’), we have that px — py is
W (B')-invariant. Since X is simple, Y is also simple and (L3]) gives

Furnian(PY))) = = Fusna(P(Y)).

T
It follows that
Fio (P(X)) = Fuy ywisy (€77 - Fusny (P(Y)))
1

= mﬁWo/Wﬁ(B/) (e X7 Fyreenr (P(Y)))
1 - C
—.FW P(X) —gerR
T of ) T
This completes the proof. 0

3.2.2. Comments on type A. Note that if m # n, formula (LII]) restricts plainly to
A(m,n) = sl(m + 1,n + 1). If instead m = n, the formula does not restrict to h
when [v] = 374 (6; — ;) for v € S. Note that the factor 57 is W-invariant,
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hence it can be taken out of the sum. Since the left hand side of (LII]) restricts to
b, the sum
o
T G=cm)
peS\{r}
is divisible by 1 —e~D1. After simplifying, we may restrict to the Cartan subalgebra
of A(n,n) getting a superdenominator formula in this type too.

Fur(

3.3. Proof of Proposition Recall from (L8)) the definition of [y[; note that
it may combinatorially rewritten as |y[= > ;. < snf-snvy -3 and that Jy[= 0 if
v e Il. Let

ePﬂLZ«,esﬂ’Y[[

B HﬁeS(X)(l —eP)

By Theorem KWG, we have Fy#(Q(X)) = RxerX if X is a simple arc diagram.
Notice that an odd reflection changes the sign of Rxe’* and does the same on
Q(X). The interval reflections do not change RxefX, since they do not change
I1(X). Thus, due to Lemma B4 in order to prove (ILIH)), it is enough to verify
that the interval reflections do not change Fyy/(Q(X)). This is done in Lemma
below.

Q(X)

Lemma 3.9. Let X be an arc diagram and ry,., be an interval reflection. Then
Fuvw (X)) = Fs (Qrp,u) (X))).

Proof. Denote by Y the arc subdiagram corresponding to the interval [v,w] and
let Y’ = 7ry)(Y). Then X' = rp,,(X) is obtained from X by substituting Y by
Y’. View Y,Y" as arc diagrams of gl(k,k)-type. Then G = W, ) N W# is W#
constructed for Y and for Y.

Let e, d be vertices such that e —d € S(X). Denote by |e, d| the interval [e, d] \
{e.d}. Then Je — d[= £(X e are € — 2oectouinp§) With the sign 7+7 if e € &€
and the sign "—" if e € D. We see that Je — d[[ is W), g-invariant. In particular,
J~[ is G-invariant for each v € S(X) \ S(Y), since if v/, w’ are vertices such that
v'—w' € S(X)\ S(Y), then [v,w]N[v,w'] =0 or [v,w] C [v/,w'] (because the arcs
do not intersect). Notice that (px — py, @) = 0 for each a € TI(Y'), hence px — py
is G-invariant. Therefore

er_pY""quS(X)\S(Y)}]'Y[[
sesoonson (1 —e79)
and the similar formula holds for X', Y” respectively. Notice that S(X)\ S(Y) =
S(X’)\ S(Y’"). Since II(Y) = II(Y') and II(X) = II(X’), one has py = py/,

px = pxr. We see that the required equality Fiy+(Q(X)) = Fiy#(Q(X")) follows
from the equality

Fur# (Q(X)) = Fuse s ( - Fa(Q(Y)))

(3.12) Fa(Q(Y) = Fa(Q(Y")),

which we verify below.
Recall that, by the definition of the interval reflection, the interval [v, w] is of the
formv=e; >d; > ey >dy > ... >e; > ds = w, where the ¢;’s are of the same type
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and the d;’s are of another type. Then S(Y') = {a}US’, where a = v —w = e; — dj
and " = {d; — e;1}iZ]. Since S’ C TI(Y) one has

Y Di=lal=) (e —di) —a.
) i=1

veS(Y
Consider the simple arc diagram Z with the order dy > ey > dy > ... > ds > ey;
then S(Z) = S’ U{—a} and

S

1
Pz =35 Zl (e; — di) = —py, thatis pz = py +at+]al.
We have

epy +lol epv Hlal+a

Hﬁes(y)(l - 6_6)) - /e HﬁeS(Z)(l - e_ﬁ))

Since Z and Y” are simple, one has F¢(Q(Z)) = ¢/ Ry and fg(Q(Y’)) = ng/Ry/.
Arguing as in the proof of Corollary B.0] one shows that e”? R; = —efY’' Ry, and
this completes the proof of (B.12]). O

Remark 3.1. Arguing as in Lemma B.7] one deduces (L.I4) from (TIH).

Fo(QY)) = Fo( = —Fa(Q(2)).

4. DISTINGUISHED SETS OF POSITIVE ROOTS AND COMPACT DUAL PAIRS

4.1. Dual pairs and Theta correspondence. Let us now recall what dual pairs
and the Theta correspondence are: this involves some basic and well-known facts
on the oscillator representations of symplectic groups (see e.g. [I] for more details
and a rich list of references).

Let (V, (-, -)) be a 2n-dimensional real symplectic vector space. Fix a polarization
V = At @ A~ (A% are isotropic subspaces) and a standard symplectic basis w.r.t.
<' , > AT = EB?:lRei, A = @?ZIRJCZ’, so that <€i7 f]) = 51]

Starting from this polarization of V' we can construct a complex polarization of
Ve =V ®g C by setting

Ve =@ Clei+vV-1f), Ve =EPCle; — V-1f).

This polarization is “totally complex”, i.e. Vi NV = {0}. As in (LI0) we can
consider the representation M = W (Ve)/W (Ve)VE of the Weyl algebra W (V)
of (Vi, (-, ")¢c), and, by means of (LIT), we define an action of sp(V¢, (-, )c), on
M. This representation is usually called the oscillator representation. The choice
of a totally complex polarization is equivalent to assigning a compatible complex
structure J on V (i.e., J € Sp(V) such that J?> = —1). Explicitly J is defined by
setting J(e;) = —f; and J(f;) = e;. Let W be the space V seen as a complex space
via the complex structure J. The elements g € Sp(V) commuting with J form a
maximal compact subgroup K of Sp(V') and we let £ be its complexified Lie algebra
viewed as a subalgebra of sp(Vg, (-, )c). Since K commutes with J, we may let
it act C-linearly on W. We let det(k) be the determinant of the action of k € K
on W. If K is the v/det cover of K, then M has an action of K whose differential
coincides with the action of £ as a subalgebra of sp(V¢, (-, -)c).
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For future reference we describe explicitly this action. Recall that
K ={(g,2) € K x C*| 2> = det g}.

The covering map is the projection 7 on the first factor. The Lie algebra of K is
the subalgebra of £ x C given by

tr(A)
T2
Note that dr is the projection on the first factor and provides an isomorphism
between £ and €. We want to define an action of K on M in such a way that

(4.1) exp(X) - v = X (1)
for any X € t. Identify V& with W by mapping v ® (a+ib) to av+ J(bv). Then M

is linearly isomorphic to the polynomial algebra P(W') on W by identifying v € Vi
with the linear function on V7 given by v(u) = (u,v). Recall that K acts on W,

t={(A

)| A et}

hence also on P(W). With this identifications we can define an action of K on
M ~ P(W) by

(42) (9.2) p=2""g-p.

We now check that () holds. According to our definitions, if X = (A, tT(A)) ct

2
then exp(X) - p = e oA -p. On the other hand, according to (LIT), A acts on

M by left multiplication by #(A). Now, applying (LIS]), we see that
0(A)p = [0(A),p] +p0(A) - 1 =A-p+pd(A) -1

Choose a basis {z;} of V& and let {y;} be the basis of V" such that (z;,y;) = d;;.
Then {z;,y;} is a basis of V¢ and {y;, —z;} is its dual basis. Hence

004) 1= 5 37 Al 1 = 5 3y, Al

0]

= 2 Y Al = -
Therefore y
0(A)p=A-p— yp-

Exponentiating, we find (4.T]).
Let H be the element of sp(Vg, (-, )c) such that H+ = £I. Then bracketing

with H defines a Z-gradation

Sp(VC7 < ) ><C) = @ Sp(V(c, < ) >C)n

ne’l

We set p = @usosp(Ve, (-, -)c)n.  Clearly p is a parabolic subalgebra of
Sp<VC7 < ) >(C)

A reductive dual pair is a pair of real Lie subgroups G1, Gy of Sp(V') which act
reductively on V and such that each is the centralizer of the other in Sp(V'). We say
that the dual pair is compact if one of the two subgroup is compact. In the following
we deal always with compact dual pairs, assuming G; compact. We also assume
that G; C K and let s; be the Lie algebras of G; (i = 1,2). Denote by s*,i = 1,2
their complexifications. Let él be the lift of G5 to K. Since G C K it follows that
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the center of K is contained in Gy. The center of K is {exp(v/—1tH) | t € R}, thus
we can conclude that H € s5. It follows that p, = p NS is a parabolic subalgebra
of 5. Howe duality in this setting gives the following result (see also [15]):

Theorem 4.1. [6] There is a set 3 of irreducible finite-dimensional representations
of G such that, as Gy x s5-module,

M=nerm),

nex

where T(n) are irreducible quotients of po-parabolic Verma modules.

The map n — 7(n) is called the Theta correspondence.

We need also to recall the following structure theorem (cf. [7]).

Proposition 4.2.

(1) A compact dual pair (G, Gy) is of type I, i.e., G1Gy acts irreducibly on V.

(2) A reductive dual pair (G1,Gs) is of type I if and only if there exists a divi-
siton algebra D over R with involution e, an Hermitian right D-vector space
(W1, (+,-)1), a skew-Hermitian left D-vector space (W, (-,-)2) and an iso-
morphism V = W1 @p Wy of R-vector spaces such the symplectic form (-, -)
corresponds to Trpmr((-,-)1 ®eo (-, -)2) and under which Gy and Gy map to
the isometry groups U(Gy, (-, -)1), U(Ga, (+,-)2), respectively.

4.2. Cartan involutions. Suppose that g is a Lie superalgebra of basic classical
type. If g is simple of type A(1,1) let A be the set of roots of ¢gl(2,2). In all other
cases we let A be, as usual, the set of roots of g. Choose a set AT of positive roots
and let IT = {ay, ..., a,} be the corresponding set of simple roots. If g is not of type
A(1,1) then the root spaces have dimension 1, so we can choose for each o € A™
root vectors X, € g, and X_, € g_, with the property that (X,, X _,) = 1, and
let hy = [Xao, X_o]. Weset e; = X, and f; = X_,,. If g is simple of type A(1,1),
then, given a € A, we let X, be the projection on g of the corresponding root
vector in ¢l(2,2).

Recall from [9] that g is the minimal Z-graded Lie superalgebra with local part

Pcrebe @
i=1 i=1
and relations

(43) e, fil = 0ijhay,  [has €] = (i, 05)e5, [hay, f5] = — (0w, ) [,
on the local part. From now on we assume that (a;,c;) € R for any ¢,j5. In

particular, if g is of type D(2,1, ), we assume that o € R.
We let NV, g be the structure constants for the chosen basis of root vectors:

[Xa,Xg] = Na7ﬁXa+67 if a, B,aa+ P € A.

Set 0, = —1if av is an odd negative root and o, = 1 otherwise, so that (X,, X_,) =
0,. We also let p(a) be the parity of a: p(a) = 1 if a is odd and p(a) = 0 if « is
even. The following statement is a reformulation of Lemma 3.2 of [§].

Lemma 4.3. Given «, 5 € A such that o+ € A, let p, q be non-negative integers
such that B +ic € AU{0}, i € Z if and only if —p < i <gq.
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(1) If a is even, then NogN_qarp = 5q(p + 1)(a, @)
(2) If ais odd and (o, ) # 0, then

—aa%q(a, @) if p is even

Na N—aoz - . . .
Fimmas {aa%(p—l—l)(oz,a) if p is odd

oo, B) if pis even

3) If a is odd and (a,) =0, then NogN_qarp = L .
(3) If a is odd and (o, a) en NogN_n a+8 {O it is odd

Proof. The first statement follows as in the case when g is a Lie algebra.
For the second statement, let us first assume that o and S are not proportional.
Then, as in [8, Lemma 3.2], we obtain
P
NesNoaars = 0a 3 (=17(8 = i) (ha).
i=0
Since 2« is an even root, we see that the subspaces

Z Cap12ia; Z Copr2it1)a

—p<2i<q —p<2i+1<q

are the irreducible components of Efp<i<q Cgpria viewed as a (Xog, hoo, X _04)-
module. Tt follows that (ha) + q(c, @) = —B(ha) + p(ev, @) if p — q is even while, if
g—pis odd, then 3(ha) +4(0, @) = —3(ha)+(p—1)(a, a) and A(ha)+(g—1)(a, @) =
—fB(ha)+p(a, ). This implies that p—q is even and 3(h,) = %52 (a, ). Substituting
we find the statement. Suppose now that o and  are proportional. There are only
two possibilities: § = a or f§ = —2a. Both cases follow directly from the Jacobi
identity

[[onaX—oz]aXﬁ] = [Xom [X—OHXBH + (_l)p(a)p(ﬁ) [Xom Xﬁ]aX—oz]-

Finally, if (o, ) = 0, then, as in Lemma 3.2 of [8], we obtain
p

Na,ﬁN—a,a-i-ﬁ = 0Oq Z(—l)l(ﬁ - ia)(hoz)a
=0

hence the statement follows readily. O

As shown in the proof Lemma 3.3 of [§], we have that
Neaois = (—DMQ)MNfﬁ,fa-
0p
Substituting in Lemma [4.3], and using the fact that if o, 5, «+ /5 € A then N, g # 0,
we find

(4.4) NogN_g_o = 5 a(p + 1) (a, @)
O-Oé‘i‘ﬁ

if v is even,

g, o if p is even
(45) Na,ﬁN—ﬁ,—a = 20;a+¢765q< ) ' p '

20648 (p + 1)(0[, O[) lfp is odd
if o is odd and (a, ) # 0, and

— 0,0

(4.6) NapN_g_o = (0, B)

CTOH_B
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if a is odd and (o, ) = 0.
Introduce the anti-involution 7" of g defined on the local part by
T(h)=h if h € b,
T(e;) = f if ay; is even,
T(e;)) = /—1f; if o; is odd.
Since it preserves relations (43), it can be extended to g, and T(g,) = g_o. As
shown in Lemma 3.8 of [§], we can choose X, X_,, in such a way that (X,, X_,) =1
and T'(X,) = v/ —1p(a)oaX_a, and we can still assume that X,, =e¢; and X_,, = f;.
It follows that, if a, 8, + 5 € A, then
Na,pv _lp(a+6)0a+ﬁX—a—ﬁ = T'([Xa, Xp])

= [T(Xp), T(Xa)] = N_jg o/ =T "0 00X 0 s,

hence
(4.7) Nojp = (_1)1’(@?(5)%]\/‘75 = _Ta08 N_a_s
’ Oa+p ’ Oa+p
Combining (A7) with (44), ([43), ([@4), it follows that
1
(4.8) Nip =54+ 1(a )
if «v is even,
(a7a) . .

s J(—1pde) if p is even
(4.9) Nop = {_(_l)p(ﬁ) (p+1)2(a,a) if p is odd
if a is odd and («, ) # 0, and
(4.10) N5 == (=" (a, B).

if @ is odd and (o, ) = 0. Thus N, g is either real or pure imaginary.
If (a, ) # 0, let €, = sgn(a, a). Let

€ — {ea if p(«)

1 if p(«)

0,
1

Lemma 4.4.
_ gozgﬁ
§a+ﬁ

(4.11) Nog Nos.

Proof. Since N, 3 = £N3, it is enough consider the following three cases:

(1) « is even;

(2) « is odd non-isotropic and f is odd,;

(3) « and g are isotropic.
In case (1), by ([ES), we have N, 3 = £,Na 5. Thus the result follows obviously if
$ is odd. If § is even, then observe that (£.8) implies that N, g # 0 if and only if
€a = €3 = €q4p. This observation implies the result.

In case (2), by Lemma [4.3] (2), the product N, gN_q o+ is real; by (1), N_y 045

is real iff {445 = 1, so N, g is real iff {,,3 = 1 as required.

In case (3), we have 2(a, 8) = (@ + B,a + 8), so, by @I, Nas = €arsNas as
desired.
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t

In the above setting, given complex numbers Ay, ..., A, such that \; € V—1R if
p(a;) = 1 and A; € R if p(a;) = 0, one can define an antilinear involution w : g — g
setting
(4.12) wle) = Nifi, w(fi) =XNlei, wlha,) = —ha, 1<i<n.

Since w preserves relations (43), it follows that it extends to g.

Clearly w(X,) is a multiple of X_,. We define \, for each o € A by

(4.13) w(Xa) = —0a&araX _a-

Hence, if o, B,a+ S € A, since w is an antilinear automorphism, we have

—0a+5§a+5Aa+5Naﬁ = 00088068 a3 N_q,_p.
Using (4.7) and (4I1]), we deduce that
(4.14) Aats = Aadg,  AaA_q =L
It follows that, if &« =Y " | n;a;, then

(4-15> Ao = H(_gai)\i)m-

(2

Endow g with the Z-grading

(4.16) s=Pu

1EL
which assigns degree 0 to h € h and to e; and f; if «; is even, and degree 1 to e;
and degree —1 to f;, if a; is odd.
Let r={i|1<i<n,pley) =1}, 7°={1,....,n}\ 7.

Proposition 4.5.
(1) The set g8 of w-fized points in go is a real form of go.
(2) q¢ is a compact form of qo if and only if i, ;) < 0 for all i € m°.
(3) If Ni(ay, ;) < 0 for all i € 7° and /—1)\; have the same sign for all i € 7,
then, for any positive integer v, (X, w(Xo))(a, ) < 0 if X4 € qar D q_sr
and (Xo, w(Xa)) (o, ) >0 if Xy € qar_2 D q_ar12.

Proof. The proof of the first assertion is standard. For the latter two claims observe

that, by (£I3),
(4.17) (Xo,w(Xa)) = —0aala-

If o is an even root, the r.h.s. of ([AIT) is a real number whose sign does not
depend on the choice of the basis of root vectors X,. In fact, if {X/} is another
basis with [X/, X" | = 04hqa, then X/ = ¢, X, for suitable complex numbers ¢,
and (X/,w(X")) = —|cal?0alara. Therefore we can use formula ([AIH) to prove
the statements in a straightforward way. As for (2), recall that a real Lie algebra is
compact if the form (-, w(-)) has signature opposite to that of the invariant form (-, -).
If X, € qo then A\, = [[(—&a, i)™ Therefore —£,0, 0 = =& [[(—E€a; Ai)™ > 0 for
any « if and only if A\;(a;, ;) < 0 for all ¢ € 7°. Claim (3) is proved in a similar
way. 0
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Let
V = fixed point set of wyg,.
Clearly V is a real form of g;. Since a basis of V' is given by
(4.18) {Xo+w(Xas) | Xo €qi,1 €22+ 1},

it is checked easily that (-,:) = (-,-);v is a real nondegenerate symplectic form.
Since adg, ((90)r) C adjg, (go) N sp(V'), we have that

adjg, ((go)r) = adyg, (go) N sp(V)
and that ad|g, (go) N sp(V) is a real form of adg, (go).
4.3. Dynkin diagrams. We will briefly recall the usual encoding of sets of positive
roots by means of Dynkin diagrams. In the following N =n+m + 1 and (), ®,
[ correspond respectively to even, isotropic and nonisotropic (both even and odd)
roots. A - is a placeholder for even or isotropic roots. The possible diagrams in
each type are listed in [9]. We reproduce this list below.
4.3.1. Type gl(m+1,n+1).

(4.19)

«aq a2 anN AN+1

4.3.2. Types B(m+1,n+1) and D(m+ 1,n+ 1). The possible diagrams in these
types are

(4.20) . . o O

aq a2 an QAN 41

for type B(m + 1,n+ 1), and

(4.21) : ~ O—— 0O
a1 a2 an AN+1
(4.22) : : . : ® O
[e%1 (e D) QAN -1 an QN41
(4.23) O
QN+1
aq 0;2 QaN—1 \
O
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(4.24) ®

aN+1

for D(m+ 1,n+1).

4.4. Distinguished sets of positive roots.

Definition 4.1. We say that a set of positive roots A" is distinguished if q; =
{0} for |i| > 2 in grading (EI6). We say that a set of positive roots AT is very
distinguished if the corresponding set of simple roots contains a unique odd root.

Since max{a; | > | a;; € AT, p(a;) = 1} = 2 for any choice of A", we have
that if AT is very distinguished, then it is distinguished. The sets of positive roots
which in [10] and in most of the subsequent literature are called distinguished are
all “very distinguished”. We have preferred to change the terminology because of
the relationships with the Theta correspondence.

We now discuss the possible distinguished subsets of positive roots up to Wy-
equivalence. The classification is basically a case by case inspection, looking at all
possible diagrams (cf. [9] and [22] for the exceptional types) and calculating the
coefficients which express the positive roots as a linear combination of the simple
roots.

4.4.1. gl(m,n). Given non negative integers p,q with p + ¢ = m, we let Agl”q) be
the set of positive roots for gl(m,n), corresponding to the following set of simple
roots

(pa) _
Hgl —{61 _627--'7761)_51751_527"'75n_€p+176p+1_€p+27"'7€m71_€m}-

This is essentially the only possibility for a distinguished set of positive roots (in-
cluding the possibility p = 0 or ¢ = 0, in which case q; = {0} for |i| > 1). The
other one is to take non negative integers r, s such that » + s = n and exchanging
€’s with ¢’s. But this case is equivalent to the above by exchanging m and n, so we
will not distinguish these two possibilities.

4.4.2. B(m,n). There is a unique, up to Wy-action, distinguished set of positive
roots Af. The corresponding set of simple roots, with notation as in [9], is

(4.25) =461 —02,...,0, —€1,61 — €2, ..., Em_1 — €Em, Em }-

We also allow the case m = 0, in which the set of simple roots is {1 —da, ..., 0,1 —

O,y On }-
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4.4.3. D(m,n). There are three distinguished sets of positive roots, up to Wy-action
: Af AL, AL, The corresponding sets of simple roots are
Opy ={61 — 0o, ..., 0n —€1,61 — €2, .., Em1 — €Em, €Em_1 + Em},
Hpe={€1 — €2y s €m1 — €my € — 01,01 — 02y oo, Ot — Opy, 205},
Hpo ={e1— €, ..y €m1 + €m, —€m — 01,01 — 02, ..., Op1 — O, 20, }.
4.4.4. C(n + 1). There are three distinguished sets of positive roots, up to Wjg-
action: AL, ALy, A, The corresponding sets of simple roots are
ey = {61 — 09, ..., 0p1 — On, 0 — €, 0, + €},
Moo ={e— 61,01 — 02y, 0p1 — Op, 20, },
Moy ={—€— 01,01 — 02, ..., 0n_1 — Op, 20, }.

4.4.5. FEzceptional types. A direct inspection shows that the distinguished sets of
positive roots correspond to the following diagrams

(4.26) < ==

for D(2,1, ) (left display; it will be denoted by AJ]{)(
will be denoted by A}), and to

), G(3) (right display; it

2,1,a)

(4'27) ® Y <O O C———O0 <0

for F'(4) (they will be denoted by A}, A},, respectively).

4.5. Distinguished sets of positive roots and real forms. If A" is distin-

guished we choose w corresponding to \; = —¢,, if o; is an even simple root and
A\ = v/—1if o is an odd simple root. Set, for any o € A},
1 1

Ca = E(Xa —V=1X_,), fo= E(X,a —V=1X,).

Since g1 = q; + q_1, applying formula (£I8) with our choice of w, we get that these
vectors form a standard symplectic basis of V. Since

EB Clea £V —1fs) = glia
ozeA'lF

the oscillator representation is exactly M2 (g;) as a sp(g1)-module.
Observe now that for any Lie superalgebra of basic classical type we have

(4.28) g0 = 0o X
with g, g2 reductive Lie algebras. Set
(4.29) s; = adjg, (gh) Nsp(V), i=1,2.
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A case by case check in the distinguished sets of positive roots shows that we can
always choose gJ, g2 so that:

g5 Cdo, 05=(q0N0])®(q2+ o)

In the case of g = gl(m,n), we choose g} = gl(m), g = gl(n) or the other way
around. Combining these observations with Lemma we readily obtain the fol-
lowing result.

Proposition 4.6. If A" is any distinguished set of positive roots of a Lie super-
algebra of basic classical type, then s; is a real form of adjy, (g(). Moreover s is a
compact form of adjg, (g5) and there is a Cartan decomposition €@t of so such that
€ = adyy, (95 N o) and t° = adjg, (92 © 9-2).

In particular, if g2 = q—o = {0} then s, x so is a compact form of ad, (q0) =
ad|91 (90)

4.6. Detour: classification of real forms. We now deepen some aspects of the
theory developed in the last two Subsections, in order to obtain an explicit con-
struction of all real forms of Lie superalgebras of basic classical type, which have
been classified in [9], [I8] and [2I]. In this section when referring to type A(m,n)
we mean either g = gl(m,n) or the simple superalgebra of type A(m,n).

Let gr be a real form of g and let w be the corresponding complex conjugation.
Then wyy, is an antilinear involution of the Lie algebra go, hence there is a corre-
sponding Cartan decomposition gy = € @ p, with Cartan involution (,. We will
describe explicitly the involution (.

Let Ky be a compact Lie group having £ as Lie algebra and let tg be the Lie
algebra of a torus in Ky. Then t = tg ®r C is a Cartan subalgebra of €. Let b
be the centralizer in go of t. It is clear that both t and § are w-stable. Since b is
(o-stable, we have h = (hNE¢) @ (h Np); since w(, = (,w, we have w(hNp) C hNp.
SohNp = (hNp)*++/—=1(hNp)~. It is known that tg ® /—1(hNp)* is a Cartan
subalgebra of a compact real form of gg; therefore roots are purely imaginary-valued
on it. So the real span of roots is contained in v/—1tg @ (h N p)*. Now fix a set of
positive roots AT and let wy be the involution given by (EI2) with the following
choice of parameters:

(4.30) Ni = —€y, forigm, N =+v—-1foriem.

Then
(WOWO)H:[, (MOWO)WQP: —[

In particular, t is a Cartan subalgebra of gg°°. It follows from [I1], Chapter 8] that
(w o wo)igy = Mo © €™ with 7y a diagram automorphism of gy and h € t. Clearly

—ad(

N = wouwyoe " is an extension of 1y to g hence we can write that

w =10 e oy,
with 7 an automorphism of g such that 7y, is a diagram automorphism of go. We

now list the possible choices for automorphisms 7 of go, such that 7, is a diagram
automorphism of go.

Lemma 4.7. There exists n € Aut(g) such that 0y, is a nontrivial diagram auto-
morphism if and only if g is of type A(m,n), D(m,n), D(2,1,a), a € {1,(=2)*'},
and 1)g, s as follows.
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(1) If g is of type A(n,m) with n # m, then nyg, restricts to the nontrivial
diagram automorphism of both A, and A,,.

(2) If g is of type A(n,n), then ny, is either the nontrivial diagram automor-
phism of both A, components, or it is the flip automorphism between the two
A, components, or the composition of these two automorphisms.

(3) Ifg is of type D(m,n), m > 2, then g, is the unique diagram automorphism
of go-

(4) If g is of type D(2,1) = D(2,1,a), a € {1,(=2)*'}, then n is the unique
diagram automorphism of the diagram in the left display of (L20]).

Proof. No n as in the statement can exist if gy has no nontrivial diagram automor-
phisms. This rules out the cases F'(4), G(3), B(m,n) with (m,n) # (2,2). The
case when g is of type B(2,2) is also excluded because the flip automorphism
of go = By X B, sends the unique odd simple root to a weight which is not a
root. Let us now deal with type A(m,n). An automorphism of g of type A(m,n)
which restricts to the nontrivial diagram automorphisms of both A, and A,, is
. A B\ —At
gwenby(c D :(—Bt _pt
r ( A B\ (DUC
c D) \ B A
tomorphism. We are left with proving that there is no automorphism of g of type
A(m,n) which restricts trivially to, say, A, and nontrivially to A,, or it is obtained
from this one by composing it with the flip. This is easily checked by observing
that these latter automorphisms map the simple odd root to a weight that is not a
root.
If g is of type D(m,n), an automorphism that restricts to the unique dia-

gram automorphism of go is Ad(J) with J = ( Im(_)l’l IO ), where [,,_11 =

( ["671 _01 ) € gl(m).

We now deal with the case when g is of type D(2,1,«a). If « € {1,(—2)*'}, then g
is isomorphic to D(2, 1) and claim Ad(J) gives as above the desired automorphism.
We need to check that, if o ¢ {1,(—2)*!}, then there is no automorphism 7 of g
which restricts to a non trivial diagram automorphism of gqg and that, if « = 1, then
Ad(J))q, is the only one. We check this as follows. Recall that go = (sl(2,C))*?,
and let [, B2, B3 be the simple roots of these copies of si(2,C) Since the form
(n(+),n(+)) is invariant, then there exists a constant ¢ such that (n(-),n(-)) = c(-, ).
If 7 restricts to a diagram automorphism of go, then n(5;) = Bouy, ¢ = 1,2, 3, for
a suitable permutation . Hence (8,4, Bo)) = ¢ *(Bi, 8;). We check directly that
this is not possible for a real value of a different from 1, (—2)*!' and also that, if
a = 1, then the only possibility is given by Ad(.J). O

). The flip automorphism F' is given by

and the composition F' o (—st) gives the remaining au-

The case of g being the simple Lie superalgebra of type A(1, 1) needs special care,
so we postpone the discussion of this case to the end of this section. Until then, we
are excluding this case from our discussion.

In order to complete the classification we choose a very distinguished set of posi-
tive roots. If g is of type D(m,n), we choose Af,. We wish to compute the action
of w on the generators e;, f;. We will often use the following result of Serganova.
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Let 0, be the map on g defined by setting
(4.31) Oxjgo = 1d, 5,\|gl+ = \d, (5,\‘21; = \"'d.

If g is of type I, then ¢, is an automorphism of g for any A € C. If g is of type I1,
then 4, is an automorphism of g if and only if A = £1. By [20, Lemmas 1 and 2],
an automorphism of g that restricts to Idg, is necessarily d,.

Since the form (n(-),n(-)) is invariant, we have that there is s, € C such that
(n(-),n(-)) = sy(-,-). Since n* = Id on gy, we see that s, = £1. Let now iy be the
index of the unique odd simple root. Set v = n(a;,). Then there is A € C such that
n(ei,) = AX,, so that n(fi,) = 8,0, A" X_,. If gy = Idjq,, then we set 1 = Id,. If
Ngo 7 1d|g, and g is of type A(m,n), then we set 1, = 1o dy-1, while, if g is of type
D(m,n) we set n, = Ad(J) with J as in the proof of Lemma L7l Then, in all cases
n(e;,) = X, and we can write

w = n15,\ead(h)wo.

We want to find conditions on A and A for which w = 7,6 1e%M) o has order 2.

First assume that 7, = Id. In this case h = t and n = 0, for some A € C.
We see that w(e;,) = vV—1A"te @M £, w(e;) = —eq,e W fiif i # ig, w(fi,) =
V=1 e%oMe, w(e;) = —eq,e W fi if i # 4. Since w is an involution we obtain
that Ae®o™ € R and e € R if i # iy, hence setting \;, = v—IA"te 0" and
i = —€q,e” %" we see that w has the form of ([EIZ).

Assume now that 74, # Id. Recall that 1 acts on gy as a diagram automorphism.
Since, by our choice of the set of positive roots, the simple roots of gy are simple in
g if g is of type A(m,n) while, in type D(m,n), n; is a diagram automorphism of
g, 71 induces in both cases a transposition i — ¢ on the indices corresponding to
the simple even roots. If i ¢ 7, then

we;) = nead(h)wo(ez‘) — —Eam(ead(h)fi) — _Gaiefai(h)TI(fi) — _Eaieiai(h)snfi/-
Hence
w(e;) = e~ (Mg,
Since h € t we have ay(h) = a;(h), therefore we get (") € R,
We distinguish the following cases.
(1) If g is of type D(m,n), then n(w;,) = a;, and s,, = 1, hence

w2(6i0) _ eam(h)e_aio(h)eio.

Therefore e € R.

(2) If g is of type A(m,n) and (n1))g, = (—5t)|g,, then o, = =1 and () =
(—st)d, for some p. Hence (11)? = (—st)?, and we see that ()2, = —Id.
Moreover s,, = 1.

It follows that

2
o1

w(e;,) = |A|T2eY W e, |
Since h € t, we have v(h) = a;,(h), hence |A\| = 1 and e®o(® € R,
(3) If g is of type A(n,n) and (11))4, is the flip, then (11)4, = Flg,- It follows
that 0, = —1 and n; = FJ, for some p. Hence (m1)* = F%, so (m)7, = Id.

Moreover s,, = —1.
It follows that

w(e;,) = |A|T2eYWemio (e, |
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Since h € t, we have v(h) = a;,(h), hence |A\| = 1 and e®o(® € R.
(4) If g is of type A(n,n) and (m))g, = F(—st) then v = a;, and s, = —1.
It follows that

w?(ei,) = —Ae™io (h))\—le*‘”o(h)@ioa
hence \e®io(h) ¢ v —1R.

Let us now return to the general case. Fix h as above and define

5,240 g if 1)g, = Idy,
wh = { ead(h) in cases (1), (2), (3)
8 —ie Mg in case (4).

As observed above wy, is an antilinear involution of the form of (AI12).
We are now ready to give an explicit formula for the Cartan involution corre-
sponding to wyg,. Define the map ¢, : g — g by

(4.32) Cop(m) =2, 2€DH, () (Xa) =sgn(\")X,,
where A" is the multiplier defined in ([@I3)). It is easy to check using ([#I4) that
Cw, 1s an involution of go. We claim that
Cw =1Mmo th-
is the Cartan involution corresponding to wjg,.
First we prove that sgn(\") = sgn()\gl(a)) for « € Af. We prove in fact that

DU )‘]v;l(a) A direct computation shows that A" = c,e @™ for any a € Af,
1 if X, € ) ' .
where ¢, = ' 9o . The claim follows since our choice of h forces

-2\F?2 it X, € 42
a(h) =m(a)(h).

Clearly n1(Xa) = do X, (o). We now prove that |d,| = 1 for any o € Ag. For this
observe that d_, = s,,d;" and d,, (o) = d;'. Hence, since w?(X,) = (mwy)*(Xa) =
X, it follows that
1= €abp@MA ) (myd-ady ()

aN = (a
S0 1 = €a€_yy(a)Sm |dal 2 = |do| % as WlShed.

In order to prove that ¢, is the Cartan involution corresponding to wy,,, we need
only to check that w and ¢, commute and that wyy, o (, is the conjugation of a
compact real form of gy. The first claim is a simple computation:

w|90<w<Xa) € (a Sgn<)‘h))‘zl(a)dad*m(a)X* Sy €y (a Sgn<)‘h>)‘tha7
while
Cowige(Xa) = —€asgn(A, () Ad_ad_p ()Xo = —€asgn(A)NX_,

so the claim follows from the observation that s, €, (o) = €a-
For the second claim it is enough to check that e,(X,,w(,(X,)) < 0 for any
a € Ag. Indeed

€a(Xa,w((Xy)) = —easgn()\h))\m(a €n1(a)Sm = —sgn(AMA!,
and this number is always negative.

Recall that we are excluding the case when g is the simple Lie superalgebra
of type A(1,1). It follows from [9, Prop. 5.3.2] that, if w and w’ are antilinear
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involutions of g such that gg is isomorphic to gg’/, then ' is conjugated by an
isomorphism of g to either w or wo d_;. Consider now the antilinear involution wg
on g defined by wr(e;) = €;, wr(f;) = fi, and wg(h) = h for h € v/—1h*. Then,
since wy, is an antilinear involution of the type described in ([AI2]), we have that
WrWrwr = wpd_1. Moreover, if n1(gy) C g;, we have that wrnm = mwg, so wg
provides a real isomorphism between g and g«°-'. If instead n;(g) C g;, then
g is of type A(m,n), and § /5 provides an isomorphism between g* and g@d-1. Tt
follows that we need only to classify the symmetric pairs (go, £) up to isomorphism.
First of all we consider cases (3) and (4). In both cases (Cy)|q1 gives an isomorphism
from g — g3, so the map (X,Y) — X + (,(Y) gives an isomorphism between
g6 x g4 and gy that maps the diagonal copy of gj to the set of fixed points of (,.
Thus the real form g& is isomorphic to g} seen as a real Lie algebra.

Let us now turn to the other cases. Choose t € h in such a way that e®®) =
sgn(AL) for i # dp. We claim that we can choose t € t. Since sgn(A:) =
sgn()\zl(ai)), it is clear that we can choose ¢ so that 1;(a;)(t) = «;(t) for i # ig. It
remains to check that we can choose t so that a;,(t) = mi(a,)(t). This is clear if
m(ay,) = iy, so we are left only with case (3). In this case we know that

e%io(h) — emlaig)(h) — ,—aig(h) H e—ai(h)
%10

This implies that (e*o®™)* =TT, e *"_ Tt follows that [], ., e~ > 0 so that

iio
eaio(t) — % (t) H sgn(efai(h)) _ 6771(0@0)(15)
%10

hence we can choose t € t as wished.

If g is not of type A(m,n), then the simple roots of g are linearly independent,
so we can further assume that e®o® ¢ R. If g is of type A(m,n) and n, = Id,,
then we can choose A so that Ae®o(®) € R. If, instead, we are in case (3), then, as
shown above, (e®0®)? =1, so, again, e®® € R. This implies that we can define
an antilinear involution w’ = 1,4 1e%® . Observe that (o = (v s0 w and w’ define
the same real form. Moreover (, = ne®") with t = ¢’ if g is of type C(n + 1) or
A(n,m) and t' defined by setting a;(t) = o;(t') for i # io, oy (t') = Zv/—1 + a;,(t)
in the other cases.

We will now use Kac classification of Lie algebra involutions [I1] to classify (.
Let {,..., 5.} be the simple roots of (gi)™ corresponding to the set of positive
roots A‘J[. Recall that 3 = oy, for some simple root of gf, corresponding to Ag. Let
X% be the diagram of gi and let (X}Q)(ri) be the corresponding affinization with
ri = 1if (m1))g = Id and r; = 2 otherwise. Let a’; be the labels of (X]i\,)(”) and set
0i =351 a’fi. Using the analysis done in [I2} §3] we find that there is 7 € t and
w in the Weyl group of g* such that 2mv/—1t" = w(t') + 7 with ") = §, and
t" € tN [go, go] having the following property: if 5% = 8(t") and s = r% —0;(t"),
then

i 1 i 1
(4.33) s; € 10, 3 1} and Zajsj =

Jj=0
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It follows that 27V -1w(@)(t") — cai(t) for all § #£ i and that Ay~ te® (@) @V =1t") —
Ae®io®) | This implies that e>™V=12(") € R for all i # io. Moreover, in type A(m,n)
and C(n 4 1) with 5 = Idy, A~ le®0@™=1") ¢ R In type A(m,n) with n; as
in case (3), since 7 € t we must have 2 = 1 so e ?™V=1"") ¢ R. In the other
cases we have e2™V =12 (") ¢ \/ZTR. In turn, this implies that there is an antilinear
involution w” such that ¢,» = ne?™V 194" Since (,» is conjugated to (,, we see
that w and w” define isomorphic real forms. The outcome is the following:

(1) If g is of type C(n+ 1) or A(m,n) and 1y = Id,, then the list of all ¢ €
b N [go, go] that satisfy ([@33) and such that there is A € C with Ae®o?™V=1t") ¢ R
gives a list of all real forms. Since the latter is an empty condition, we see that the
list of all real forms is given by all the t” € b N [go, go] that satisfy ([Z33]).

(2) If g is of type A(m,n) and 7, is as in case (3), then the list of all ¢ € tN[go, go]
that satisfy ([E33) and such that e>™V~1 (") ¢ R gives a list of all real forms.

(3) In all the remaining cases the list of all t” € tM [go, go] that satisfy ([£33) and
such that e2™V—1% (") ¢ /=R gives the list of all real forms.

The set of t” € t N [go, go| that satisfy (L33) is finite, so we need only to check
the above conditions on this finite set. The outcome of this computation is given
in the following tables. In all cases except A(m,n) and C'(n + 1) define w; € b by
a;(w;) = 6;; where the simple roots of g are enumerated from left to right. If g
is of type A(m,n) or C(n + 1) we define w; for i # iy to be the unique element
in b N [go, go] such that a;(w;) = &;; for all i # dp. In the following tables we
assume that AT is a very distinguished set of positive roots. For types D, C, F we
choose A, ALy, AL, respectively. Table I displays the real forms corresponding
to antilinear involutions with 74, = Idy, and Table II covers the remaining cases.
In Table I we also list the parameters (A, ..., \,) occurring in ([AI2]), setting, only
once in the paper, i = v/—1; the Aj which are not listed are equal to 1.
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g real form of go t’ (A1, oy n)
gl(m,n) u(p,m —p) x u(g,n — q) 3% + 5 @nta, Am =
(0<p<m—-1,1<qg<n) | Aj =Amyq=—1
(I<j<m,j#p)
A(m—1,n—1), | su(p,m —p) x su(qg,n —q) xR %wp + %wn+q, same as above;
m#mn 0<p<m—-1,1<qg<n)
An—1,n—-1) | su(p,n—p) x su(q,n — q) %wp + %wn+q, same as above
(0<p<n—-1,1<qg<n) | withm=mn;
B(0,n) sp(2n,R) 1w, An =1
A =1
1<j<n-1)
B(m,n) so(2m + 1) x sp(2n,R) 1w, An =1
)\n+k == 71
(1<k<m)
B(m,n) so(2p,2m + 1 — 2p) x sp(2n,R) | —1w, + Jwnyy, An = —1
(1<p<m) Antr = —1
(1 <k<mk#p)
D(m,n) so(2m) x sp(2n,R) 1w, An =1
)\n+k == 71
(1<k<m)
D(m,n) so(2p, 2m — 2p) x sp(2n,R) —1mn + Lwniy, An = —1
(1<p<m-2) Antr = —1
(1 <k<mk#p)
D(m,n) sp(n) x so*(2m) 1w, + L wman An =1
)\n+k == 71
1<k<m—1)
D(m,n) sp(g,n — q) X so*(2m) 1wy — twn + Swman, An = —1i
(1<g<n-1) Ag = Atk =—1
1<k<m—1)
C(n+1) sp(n) x R 0 AL =1
C(n+1) sp(2n,R) x R L n1 A =i, Apg1 = —1
Cn+1) sp(q,n—q)XR fwgs1, 1<g<n—1 A =i, =—1
D(2,1,a) (s1(2,R))*3 —im + lwy + tws (—i,1,1)
D(2,1,«) su(2) x su(2) x sl(2,R) 1w (¢, —1,-1)
F(4) 50(7) x sl(2,R) 201 (4,—1,-1,-1)
F(4) su(2) x so(1,6) 2wy — 2w (4,1,-1, —1)
F(4) su(2) x so(2,5) twy — 31 (—i,—1,1,-1)
F(4) so(3,4) x sl(2,R) %ws — %wl (=i,—-1,-1,1)
G(S) gz o X Sl( ) %W1 (7;7 —1)
G(3) 92,2 X 8[(2,R) 7%@1 —+ 53 (77;, 1)
Table I
g Nao real form of gy t”
gl(m,n) —st | gl(m,R)) x gl(n,R) 0
A(m,n),m#n | —st |sl(m,R)) x sl(n,R) x 0
A(n,n) —st sl(m,R)) x sl(n,R) 0
gl(2m, 2n) —st (Zm)) X u*(2n) %wm + L womin
A(2m,2n),m # n | —st u*(2m)) x su*(2n) x 2 @m + S Woman
A(2n,2n) —st u*(2m)) x su*(2n) 5Tm + 5T2m4n
gl(n,n) F gl(n, C) 0
A(n,n) F sl(n, C) 0
D(m,n) Ad(J) | sp(2n,R) x so(2m —2p — 1,2p+ 1) | =300 + 3Tnp
(0<p<m=—2)

Table II




34 GORELIK, KAC, MOSENEDER, PAPI

In Table II, we have not considered the case when g is of type D(2, 1, —%) with non
trivial 7y, because D(2, 1, —%) is isomorphic to D(2,1). The corresponding real form
is, from Table II, sp(2,R) x so(3,1). The special isomorphism so(3,1) = sl(2,C)
allows to recover the classification as stated in [I8, Theorem 2.5].

Suppose now that g is simple of type A(1,1). It needs special care since in this
case there is a large group of automorphisms acting identically on the even part
(this was apparently missed in previous discussions on real forms in the literature).
First observe that gy = sl(2,C) x si(2, C), hence there are four non isomorphic real
forms of go: sl(2,C), sl(2,R) x sl(2,R), su(2) x sl(2,R), su(2) x su(2). All these
real forms are obtained from real forms of g by restricting an antilinear involution
w of gl(2,2) to sl(2,2). Since this restriction clearly stabilizes the center of sl(2,2),
it can be pushed down to A(1,1). Hence for any real form of g, there is at least one
real form of A(1,1) which induces it. The only non-trivial thing to prove is that
also in this case the real form of gy determines the real form of g. Suppose that w
and w’ are antilinear involutions that restrict in the same way to go. Then there is
an automorphism g of g such that g5, = Idy, and w’ = wg. We now identify the
group S of automorphisms of g that restrict to the identity of gy with SL(2,C):
indeed, if ¢ is such an automorphism, then necessarily

(4.34) 9(Xa,) = aXa, +0X 9, g(X_4,) = cXyg+dX_,
(435) g(Xg) = an + bX_OQ, g(X_g) = C)(Oé2 + dX_g.

a b

d
Hence we have a map to SL(2,C). To prove that this map is bijective, we consider
the local Lie superalgebra G_; & Gy ® G; with G; = CX,, §CX,, ®CX,, DCX_y,
G, =CX_, eCX_,,dCX_,, ® CXy, Gy = h and whose bracket is obtained
by restricting the bracket of A(1,1). The corresponding minimal Z-graded Lie
superalgebra is g. A direct check shows that the map ¢ defined by (@34]), (£35)
and such that gg, = Id defines an automorphism of the local algebra, hence it
extends uniquely to an automorphism of g.

Suppose now that w = 1,e*®wy. It is easy to see that for any g € S there exists
a unique ¢’ € § such that

The fact that g is an homomorphism implies that M, = e SL(2,C).

M, = ATT A,

0 1

with A = (1 0

) if g§ = su(2) xsu(2) or sl(2,R) x sl(2,R), with A = ( —02 (Z) )
10

01
the condition that (w')? = Id, is equivalent to w = gwg, hence we must have

AEAM9:<1 0).

if g§ = sl(2,R) x su(2), and with A = ( ) if gy = sl(2,C). If W' = wg, then

01

Moreover we have that (¢') 'wgg’ = wg” with M, = AM;lAMgMg/.

Consider the antilinear antiinvolution o on SL(2, C) defined by o(M) = AM A
We have just shown that the set of M, such that (wog)?* = Id is the fixed point set
S of 0. Let us also consider the action of SL(2,C) on S by M -s = o(M)sM. If
this action has a unique orbit then, as shown above, w and w o g are conjugated, so
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the real forms g and g*" are isomorphic. To check when this action has a unique
orbit we observe that the stabilizer of any point s € S is the fixed point set of the
antilinear involution on SL(2,C) given by g — s 'o(g)~'s hence it is a real form
of SL(2,C). In particular all the orbits have the same dimension so the orbits are
the connected components of S. More explicitly

Sz{( _xz Z) € SL(2,C) |z,y eR, z € C}
if g§ = su(2) x su(2) or g§ = sl(2,R) x sl(2,R), while

_ z v—1lx
S_{(\/—_ly E )GSL(Q,C)|x,yeR,zeC}
if g¥ = sl(2,C). In both cases S is the quadric in R* of equation xy + a* + b* = 1
where 2z = a + /—1b, which is homemorphic to R x S2.

It remains to deal with the last case, i.e. g§ = sl(2,R) x su(2), where

Sz{(i ;)eSL(Z,CHx,yER,ZGC},

which is the quadric of equation xy — a? —b? = 1. This is homeomorphic to R3 x S,
hence disconnected. However, the two orbits are the orbit of M4 and of Ms_, (cf.
(E3T))), so we need only to check if g¢ and g*’~* are isomorphic, but the argument
used in the other cases shows that wg provides an isomorphism between g* and
g“%-1. Thus, A(1, 1) has no real forms other than those listed in Tables I and II.

Remark 4.1. Our treatment doesn’t cover the cases when the Cartan matrix is not
real, which happens only if g is of type D(2,1, «), where « € C\R,,a+a = —1. In
this case one has one extra real form, with even part sl(2,C) x sl(2,R) (see [1§]).

Remark 4.2. Our approach to classify real forms started by fixing a suitable set of
positive roots and henceforth the antilinear involution wy. All antilinear involutions
are then gotten as 1;e?*Mwy, by letting h and 7, vary.

One can, in a different perspective, consider just the antilinear involutions 7wy
and let the choice of AT vary. In this way one can associate to any set of positive
roots a set of real forms indexed by the outer automorphism 7;. It can be checked
that all real forms can be obtained in this way. The real forms discussed in Section
4.5 are precisely those corresponding to the distinguished sets of positive roots with
n = Idy. In Section we will discuss the real forms corresponding to the sets
of positive roots of depth 4 when g is gl(m,n) or of type B(m,n) and D(m,n). It
will actually turn out that, in these cases, all real forms of g already appear as real
forms corresponding to positive sets of roots of depth at most 4.

Remark 4.3. 1t is possible to deal with the problem of classifying antilinear in-
volutions in a slightly different way. Consider marked sets of positive roots. For
this we mean the datum (II, L) where Il = {ay,...,a,} is the set of simple roots
of a set AT of positive roots and L = {l;,...,l,} is a set of labels satisfying
l; € {£1} if p(oy) = 0, I; € {1} if p(o;) = 1. Given a marked set of pos-
itive roots, we can define an antilinear involution w; using formulas (EI12)—(Z.15)
with A\, = —¢&,,l;, so that \,, = [, We have a natural action of odd reflections
on marked set of positive roots: if r,, denotes the odd reflection w.r.t. the simple

root a; (see (2.3)), we set ro (I, L) = (rq,(I1), L), with L' = {l},..., [}, I} =
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if (ai,05) = 0,4 # j, I = 17" and I} = Ll; if (ay,c5) # 0. This action has the
following property: if ro(II, L) = (II', L'), then, since (,, = (u,,, wr and wy/ define
isomorphic real forms. Using this action, one has a combinatorial recipe to detect
the real form corresponding to a given marked set of positive roots: since any two
sets of positive roots can be obtained from each other through a sequence of odd
reflections, it suffices to consider the marked sets (Il,4, Lyq), where 11,4 is one of
the sets of simple roots corresponding to a very distinguished set of positive roots
we used for the classification. Given any marked set (II, L) one can compute com-
binatorially the marked set (I1,4, L,q) in the same equivalence class and apply our
classification to wy, ,.

4.7. Compact dual pairs coming from distinguished sets of positive roots.
Let g = gl(m,n) or a Lie superalgebra of type B, C, D. Fix a distinguished set A™
of positive roots. Let w be as in Subsection and let V be the set of w-fixed
points in g;. Also recall from ([@29)) the definition of sy, 9.

In this Subsection we prove the following proposition.

Proposition 4.8. Let g be gl(m,n) or a Lie superalgebra of type B,C, D. If At
is a distinguished set of positive roots, then there is a compact dual pair (G1,Gs) in
Sp(V, (- ,-)) with Lie(G;) = s;, i = 1,2, such that the action of go on M*" (g1) gives
the Theta correspondence for (G1,Gs) at the level of Lie algebras. The compact dual
pairs (Gy, Gy) are listed in the following table (in which m,n are positive integers):

g AT (G, Gy)
gl(m,n) | ALY [ (U(n),U(p, q))
B(0,n) |Ag (0(1),Sp(2n,R))
B(m,n) | AL | (O(2m+1),Sp(2n,R))
(4.36) D(m,n) | AL, | (O(2m), Sp(2n,R))
D(m,n) | Apy | (Sp(n), SO*(2m))
D(m,n) | Apy | (Sp(n), SO*(2m))
Cn+1) Aa (O(2), Sp(2n,R))
C(n+1) | Ay | (Sp(n), SO*(2))
C(n+1) | Ay | (Sp(n), SO*(2))

We shall prove Proposition by realizing explicitly the superalgebras as sub-
algebras of some gl(r,s) and then checking the conditions of Proposition in a
case by case fashion. For shortness we will give the details only in type D(m,n).

4.7.1. A},. Endow the superspace C*™?" with the bilinear form given by the matrix

Is, O B 0 I,
( 0 JQH),Wherngn—<_[n O)'

The Lie superalgebra osp(2m,2n) of type D(m,n) is the set of linear transfor-
mations which are skewsupersymmetric w.r.t. a supersymmetric nondegenerate
bilinear form. If we choose the form as above, then osp(2m,2n) can be realized as
the set of matrices

A By By
—-BY C; (4
BY O3 —C!
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with A skewsymmetric 2m x 2m and Cs, C3 symmetric n X n matrices. Denoting
by E;; the matrix units, set

he =4 VY —1E;imyi + V—1Emyi, 1<1<m,
Z —V—1Ewtiominti T V—1Eoumintiomii;, m—+1<i<m+n.

Then h = @ "Ch; is a Cartan subalgebra of g.
Set (X,Y) = istr(XY); then

R _5ij m+1§z§m+n

In the chosen distinguished set of positive roots we have AT = {8, +¢; | 1 < j <
m, 1 < i <n}. We can choose for each a € AT root vectors X,, X_, in such a

way that
B 0 V—1A

The map U : g1 — Mo 2,(C),

(4.37) W(_iﬂléyzA

intertwines the adjoint action of gy on g, with its action on My, 2,(C) given by

E 0
(4.38) <0 F)-A_EA—AF
. E 0 . . .
It is then clear that ad ( 0 F ) (V) c Vif and only if E and F' are real matrices,

i. e. £ € so(2m) and F' € sp(2n,R).
Consider now the map ® : V — R?™ @ (R?")* given by

O(V—1UEi2mri + Eominiji)) = € @ f7 0<i<2m,1<j<n
O(V—-1(Eiominsi — Bomiji) = €; @ f 0<:1<2m,1<j<n
where {e;} is the standard basis of R*™ and {f’} is the standard basis of (R?")*.
Note that ® intertwines the action of ad|g (go) N sp(V) on V with the standard

action of so(2m) x sp(2n,R) on R*™ @ (R?")*.
Let (-, *)am be the standard symmetric bilinear form on R?", (-, ),, the standard

symplectic form on (R?")* and let (-,-) be the tensor product (-, )om @ (-, )2n. It
is easy to check that, for j, k € {0,...,2m}, i,r € {1,...,n}

(Ejom+i + Eomintijs Exomsr + Bomintrk) =0,

<Ej72m+n+i - E2m+n+i,jv Ek72m+n+r + E2m+r,k> =0,

(Ejomti + Eomintij, Promintr — Eomir) = —0jk0ir.
It follows that (®(X), ®(Y)) = (X,Y) for any X,Y € V. According to the clas-
sification given in [B, § 5], the pair (O(2m), Sp(2n,R)) is a type I dual pair in

Sp(R*™ @ (R*™)*, (-, -)). Since ® maps ad)g, (go) Nsp(V') C sp(V) exactly on the Lie
algebras of this dual pair, we have proven Proposition in this case.
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4.7.2. Af,. Endow the superspace C*™?" with the bilinear form given by the matrix

( ["(L]’m J(Q)n ) , where I, ,, = ( [?n [6n )
With this choice of the form, the superalgebra osp(2m, 2n) can be realized as the
set of matrices
Ay Ay B By
As  —'A; By By
‘By 'By Ci Cy
—'B; —='By C3 —'Cy
with Ay, A3 skewsymmetric m x m and Cy, C3 symmetric n X n matrices. In this
case we set

b Eii — Ensimti, 1 <1< m,
i .
Em+i,m+i - Em+n+i,m+n+i7 m+ 1 S ? S m—+n.

Then h = @1 "Ch, is a Cartan subalgebra of g and

R —0ij m+1<i<m-+n.

In the chosen distinguished set of positive roots we have A = {e; £4§; | 1 < i <
m, 1 < j <n}. We can choose for each o € AT root vectors X,, X_, in such a
way that

(4.39)
V:{(_Jg,;A ’3)|A:(\/_i11142 _\/%Al),Al,AQEMm,n(C)}.

Again, the map W, given by (L3T), intertwines the adjoint action of gy on g; with

its action on My, 2,(C), given by ([A38). It is then clear that ad ( g 2, ) (V)ycv

if and only if

. A Ay o B, DBy
(4.40) E_(_A2 Al), F_(_32 Bl)

with Ay, Ay € M, (C), By, By € M, ,(C), A, By skew-Hermitian, A, antisym-
metric, and By symmetric.

Let H be the skew field of real quaternions. Set (H")* = Endg(H", H) where
H" H are viewed as left H-spaces. Endow (H")* with a right H-action by setting
(A9)(v) = A(v)g. Identify V with (H")* @y H™ as follows. The map ¥ above
followed by left multiplication by L,, = ( I{)n \/_—01 I ) maps V into the subspace

of Moy 2,(C) of matrices of the form

(4.41) (g _AB )

Identifying H" with C" x C" = C* by x + yj <> (x,y) we see that the matrices
as in (£4J]) are precisely those commuting with the left action of j. Thus V' gets
identified with Endy(H", H™) (here H", H™ are seen as left H-spaces). The natural
map A ® v +— Ty, with T ,(u) = A(u)v identifies Endyg(H", H™) and (H")* @y H™.
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Let now @ : V — (H")*®@yxH™ be the (R-linear) isomorphism described above. Note
that, if £, F are as in ({40), then both L,,EL,! and F are of the form (&41]). Thus
we can identify them with elements Tg, T in Endg(H™,H™) and Endyg(H", H")
respectively. Unwinding all the identifications we see that if X = ( g 2, ) € 9o
and ad(X)(V) C V then ®ad(X)®~! acts on (H")* @z H™ via the natural action

Let 7 : H — H be the quaternionic conjugation: 7(a + bj) = a — bj (a,b € C).
It induces the complex conjugation in the above identification H" = C*. Let
(+,-)r, be the skew-Hermitian form on H™ given by (v,w),, = > v/—17(w;)
and (-,-), the Hermitian form on H" given by (v,w), = >, vi(w;). Let (-,-),
denote also the form induced on (H™)*. Note that, since E, F' are as in ({40), then
Te € u(H™, (-,-))) ~ so*(2m) and Tr € u((H")*, (, )n) == sp(n).

Let (-,-) be the real symplectic bilinear form on (H")* @ H™ given by

<.’.> :TTH/R('7')n®TO('7')m-
For1<i:<m, 1< 75 <n,set

(4.42) = U (V-1E;; — Emyinti),
(4.43) Yij = VN Ey — V—1Epiini),

(4.44) Zij =V NN =1E; i+ Emyij),
(4.45) Wi = U (B + V—1Enii;).

If X,Y € {X,;,Y;, Z;;, Wi;}, then it is easy to check that (X,Y) = 0 except in the
following cases:

2 = (X5, V) = —(Yij, Xoj) = (Zij, Wyy) = —(Wiy, Zsj).

On the other hand, letting {e;} be the canonical basis of H™ and {e'} the basis
dual to the canonical basis of H", we see that

(4.46) (X)) = ¢! @V —1e;,
(4.47) (Vi) =€ ® ey,
(4.43) (Zy) = & &V Tje,
(4.49) d(Wy) = —€ @ je,.

It follows that (®(X),®(Y)) = —2(X,Y) for any X, Y € V.
According to the classification given in [5], § 5], the pair
(U (H")" (-5 )n), U™, (-, )m)) = (Sp(n), SO™(2m))

is a Type I dual pair in Sp((H")* @ H™,(-,-)). Since the map ® maps adq, (go) N
sp(V') C sp(V') exactly on the Lie algebras of this dual pair, we have proven Propo-
sition in this case.

4.7.3. A},. This case can be reduced to the A}, case as follows: by a careful
choice of the root vectors, the space V' is the set of matrices

0 A
—JontA 0
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such that

Ay Ay

v ‘ w

V—1A, | —/—14, |’

—/—1w| /—1v

with Ay, Ay € M,,,—1,,(C), v,w € C". Define S, 2m € Moy 2m(C) as
I.,_1 0 ‘ 0 O

A=

0o ol 0 1
Sm.2m = 0 O0(Il,1 O
0 1/ 0 0

Let 0 : g — g be the map
A B — Sm,2mASm,2m Sm,2mB
—JgntB C —JQntBSm,Qm C .
It is easy to check that o is an automorphism of g. Since o (V) is the space described

in (Z39) we see that the map X + ® o ad(o(X)) o ! identifies adq, (go) N sp(V)
with sp(n) x so*(2m). Finally observe that str(o(A)o(B)) = str(AB) hence

(P(0(X)), 2(a(Y))) = —2(X,Y)
for any X,Y € V. This concludes the proof of Proposition in this case.

4.8. Noncompact dual pairs and gradings of depth 4. In this subsection
we classify, up to Wy-action, the sets of positive roots such that the grading (£.16))
has depth at most 4 (i.e., q; = {0} for |i| > 4) and we show that these sets of positive
roots are related to the noncompact dual pairs (U(p, q), U(r, s)), (O(p, q), Sp(2n,R)),
(Sp(p,q), SO*(2n)). These pairs exhaust the type I dual pairs, with the exception
of the pair (O(m,C), Sp(2n,C)). The latter pair cannot arise in our picture, since
O(m,C) x Sp(2n,C) is not a real form of gy for any choice of g. It occurs as the
real form go N gg with g = osp(m,2n) x osp(m,2n) and gr the diagonal copy of
osp(m,2n) in g. Since we are chiefly interested in the application to dual pairs, we
confine to study gl(m,n), B(m,n), D(m,n), C(n + 1).

In the following we choose wy (see (E30)) as antilinear involution and let \? be
the corresponding multipliers as defined in (£I3]). Recall that the corresponding
involution (,, of go is defined by setting (,,(X,) = sgn(A\2)X,.

Case g = gl(m,n). It is clear that diagrams of type A with three or four grey
nodes support sets of positive roots whose associated grading has depth 3 or 4,
respectively. These sets of positive roots correspond to the following sets of simple
roots:

(450) {61 —€2,..., €6 — 51, 51 - 52, ce ,(57« — €p+15 Ep+1 T Ept2, - -,y
€p+1 - 57’—}—17 57"—1—1 - 57’—}—27 o 757’—1—5—1 - 57"-‘1—8}7
(4.51) {er — €, en — 01,01 — 02, ., 6 — €ng1, €ng1 — €2, s €htg — Opts

57"-1—1 - 57’—}—27 0y 57"-‘1—8—1 - 57’—}—57 57’—}—5 = €htqtls ooy Ehtktq—1 — Eh—f—k—f—q}a

and are clearly the only ones with the required property about the grading, up to
switching the role of ¢ and 6. Here p+ ¢ = m,r + s = n in (L50) and h + k =
p,p+q=mr+s=mnin (). Fix (LI as a set of simple roots. To detect
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the real form corresponding to wgy, we need only to classify (Cwo)‘gé , 1 =1,2 via the
parameters 3;'-, 1=1,2,1 <5<k, ki=m—1, ks =n—1 as explained in Section

G In this case the roots (3} are the simple roots of gj:

/lezajalgjgh_la /B?I(thLjulSjST_lu

By = ap+ Qpi1 + ..+ Qg 53=&h+r---+ah+r+q7

1 ~ 2 ~
Bhij = Qniryjs 1 < J < q—1, i = Ohgrggiy, 1 <7 < s —1,

1
Bhtqg = Qhtriqg T - -+ Qhirigs,

1 .
Bhiqrj = Ohtrigrstis L <J<k—1

while 6; is the highest root of gj. In this case (,, = ™V~ with pi(t) = 3 if
sgn()\%;) = —1 and fi(t) = 0 otherwise. Note that, letting s} = f;(t) and s{ =
1 — 6;(t), then t satisfies [33). It follows that, since s; = 0 for j # h,h + g,
sp = 5,11+q = %, s?2=0fori#0,r, s§=s>= %, the corresponding real form of gq is
u(p, q) X u(r, s).

Case g = B(m,n). Recall that in type B all diagrams have shape ([£20). Assume
|| = 2. Suppose first a,, 1, € 7 then oy, 1, is odd and non isotropic. The grading
has depth 4. The simple roots of gy that are not simple in g are both of degree
2, while the largest roots are of degree 4. Arguing as for gl(m,n) it is easy to see
that the corresponding real form is so(2m, 1) x sp(2n,R). The corresponding dual

pair is (O(2m, 1), Sp(2n,R)). Otherwise the set of positive roots is necessarily of
the form

{61_627"'761)_51751_527"'75n_6p+17"'76m71_Emuem}

with p+ ¢ = m. This grading has depth 4, since the highest root is ¢; + €. Arguing
as above, we can show that it gives rise to the dual pair (O(2p,2q + 1), Sp(2n,R)).
It is easily seen that if |7| > 3 then the grading has depth strictly greater than 4.

Case g = D(m,n). If the diagram of the set of positive roots is like ([£2]]), then
arguing as in the previous case we deduce that the only sets of positive roots with
|| = 2 and depth at most 4 (indeed exactly 4) are

{51 — 0, .. '75]) — €16 T €2y Em—1 T €y, Em 5p+17 - ~75p+q—1 - 5p+q7 25p+q}7

{51 - 527 .. '751) —€1,€1 —€2,...,€6En1 + €my, —€m — 5p+17 .. -75p+q71 - 5p+Q7 25p+q}-

with p + ¢ = n, which gives rise to the dual pair (Sp(2p,2q), SO*(2m)). If instead
the diagram is like (£.23]), we again obtain a unique set of positive roots:

(452) {61 — €2, ..., €6 — 51,51 - 52, .. ~75n —€pt1y - Em—1 — €Em,y Em—1 + Gm}

with p + ¢ = m, which gives rise to the dual pair (O(2p,2q), Sp(2n,R)). In both
cases, if || > 3 then the grading has depth strictly greater than 4.

The pairs (O(2p+ 1,2¢ — 1), Sp(2n,R)) are gotten by considering the antilinear
involution w = nwy when the positive sets of roots are those in ([A52) and 7, =
Ad(J). We need to classify ¢, = n; o (,,- The extended Dynkin diagrams of g}, g
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are of type Dg), oV respectively. The corresponding roots 6; are

Bl=a;,1<j<p-1, B} =y, 1<j<n—1,

1 2
Bp = Oép + O[p+1 4+ ...+ O{p+n7 6211 = 2<O{p+n R O{m+n72) + Oman—1 + Oman,

1
p+J

Brlnfl = %(am-i-n + Qnn—1)-

:O‘p+n+j71§j§q_27

The parameters for (, are 511) = % and 3]1. =0 for j #p, s2 = % and s? = 0 for

J # n. Tt follows that the real forms of g are respectively so(2p + 1,2q — 1) and
sp(2n, R), which give rise to the dual pairs (O(2p + 1,2g — 1), Sp(2n,R)).

Note that the pair (O(1,2m — 1), Sp(2n,R)) is obtained from the distinguished
set of positive roots whose set of simple roots is

(453) {51 - 52, e 75n —€1,€61 — €2, ..., Em—1 — €Em,y Em—1 + Em}.
Case g = C'(n+ 1). According to [0, page 52|, the only sets of simple roots which
correspond to non-distinguished sets of positive roots are

{01 = 02,...,0; — €1, €1 — Giy1, 0501 — Gia, - -, 200},

{51 —09,...,0; +€,—€ — 5i+17 5z‘+1 - 5i+2, ceey 25n}-

where 7 ranges from 1 to n — 1. The associated gradings have depth 4.

5. THETA CORRESPONDENCE FOR THE PAIR (O(2m + 1), Sp(2n,R))

In this section we use the denominator identity developed in the previous sections
to derive the Theta correspondence for the compact dual pair (O(2m—+1), Sp(n,R)).
This pair, according to Proposition [4.8 corresponds to the distinguished set of
positive roots A} in a superalgebra g of type B(m,n). Recall that

(5.1) Ag==x{e €,6,0, 0,20, |1 <i#j<m,1<k#I<n},
Ay =t{0pt€,0 |1 <i<m, 1 <k<n}

(5.2) ANo=H{e; e 6,006 |1<i#Aj<m, 1<k#1<n},
AN =4{0h+e|1<i<m,1<k<n}

Also recall that the defect of g is d = min(n,m). In this Section we will use the
following notation

(5.3) A(B,) =He+e 6|1 <i#j<r}

(5.4) A(C) = +{0, £ 0,20, |n—7r+1<k#I1<n},

(5.5) AA ) =x{op =0 |n—r+1<k#1<n},

(5.6) W(A,_1) = Weyl group of A(A,_1),

(5.7) W (B,) = Weyl group of A(B,),

(5.8) W, = subgroup of W, i=1,...,r}
(5.9) W, ={weW, | w= sy, ... 895, , k even},

(5.10) W, ={weWw, |w:325¢1---525i,€7k0dd}-

Now fix the set of positive roots A} (cf. ([@25)). Then 2p; = (2m+1)(61+. . .+5,).
Set AT(C,) = AF NA(C,), AT(B,,) = Af NA(B,,), and AT(A,1) = Aj N
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A(A,_1). We denote by p©, pB, p? the corresponding p-vectors. With notation as
in Section Bl the total order corresponding to this choice of AT is

Op > >0, >€ > > €.

There is only one arc diagram associated to this total order, namely

—~

X = {0ner, ) Onarical.
The corresponding maximal isotropic set of roots is S(X) = {71,...,74}, where
(5.11) V1 =10n—€1,Y2 =0n_1—€2,...,Y4d = On_q+1 — €4
We apply Proposition B8 with B’ = Supp(X). Note that, with notation as in B.2.1]
A(Supp(X)) = A(By) x A(Cy), and we can choose A*(Supp(X)) = A(By), so that
Wsuppx)WH(Supp(X)) = W(Aq_1)W (By). With notation as in (G.8), set
W =W(A,_ 1) Wp_aW (B,).
We can choose
Z = (W(An-1)/W(A4-1))Wa—a(W (Bp) /W (Ba)),
so that Wy = W. Since Hle % = d!, Proposition gives
P
[T, (1~ —
Dividing (B.12) by Dy = e?® HaeAg(l —e ), we find
e 1 . el
Moo=~ 27 0o by

Let Py = {a = (a1,...,aq) € (Z") | a; > ay > -+ > aq} the set of partitions
with at most d parts. Recall from Sectiondlthat there is an element H € b such that
a(H) =1 for all « € Af(g), thus the domain h* ={h € b | a(h) > 0Va € AT} is
nonempty. Since, by our choice of W, in the denominators of (EI3) only sums of
roots in —A] occur, we can expand the r.h.s. of (I3) in a product of geometric
series on hT, thus obtaining the following equality of formal power series:

- -
(5.14) chM>" (g1) = > Efw(ep Lica ),

acPy

(5.12) e’R = Fw (

(5.13) chM™" (g1) =

We can write Dy = e*° [ocar (1 — e~ )er” [loca+ s, (1 —e™®). For a € Py,

define
d

wa) = — Z(ad+1,r)5n,d+r, e(a) = Zar€r-

r=1

Using (5.14), we obtain that

chM™" (g1) = ) > sgn’(w)

acPlq \weW (An—1)Wn_q Ha€A+(Cn)<1 —e )

ew(p®—p1+p(a))—p©

ow(pPe(a)—pP

X Z sgn(w)H

weW (Bm,) O‘EA+(BM)<1 - e*a)
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Here we used the fact that sgn(w) = sgn/(w) if w € W(B,,). By the Weyl character
formula, we see that

Z sgn(w)H

weW (Bm) O‘EA+(Bm)(1 a e—a)

ew(pP +e(a))—p”

= chFg(e(a)),

Fg(e(a)) being the finite-dimensional irreducible so(n)-module with highest weight
e(a). We therefore obtain that

ew(=p1+u(a)+p?)—pC

(5.15) chM> (g)) =3 > 3gn'(w)n oA )chFB(e(a)).

acPy weW(An—l)and

If A € span(é;), set

ewA+pt)—pt

(5.16) chFa(\) = Z sgn(w)H

weW (An—1) a€A+(An—1)<1 - e—a) .

As the notation is suggesting, when \ + p# is regular and dominant integral for
A(A,—1), then chF4(\) is the character of a finite-dimensional irreducible represen-
tation of sl(n, C), while, if A + p* is singular, then chF,()\) = 0.

Using the fact that sgn(w) =1 if w € Wn_d, we can rewrite (B.10]) as

hF C C
(517) M (g) =Y Y DEalwCotm@) LoD =) gy ().
acPy wEW, _g4 Ha€A+ (Cn)\AT (An— 1)<1 —e™?)

Recall from the previous section that we constructed a real symplectic subspace
V of g and a map ® : V — R*™ ™! @ (R?")* such that there is a dual pair (G, Gy)
in sp(V,(, )) having the properties described in Proposition We now want
to describe explicitly the set > and the map 7 occurring in Theorem .1l In what
follows we show that all these information can be read off from formula (5.17).

First of all we need to parametrize the finite-dimensional irreducible representa-
tions of GG;. To accomplish this we start by describing G;. With notation as in
the previous section, let J' : (R*")* — (R?")* be the complex structure such that
J'(fi) = —fori and J'(fnss) = fi for i = 1,...,n. A direct computation shows
that, if J is the compatible complex structure on V introduced in the previous
section, then ®J®~! = [d ® J'. Tt follows that, if we let W/ be the space (R*")*
seen as a complex space via the complex structure J', then, obviously, ® is a C-
linear isomorphism between W and the complex space R?*™! @ WW’. We look upon
O(2m + 1) as a subgroup of Sp(R?*™! @ (R?")*) via its action on the first factor.
Then G; = {®'¢g® | g € O(2m + 1)}. Tt follows that, if ®~'g® € Gy, then

dety (P 1g®) = detpomirigw(g) = (detgemii(g))™.
Therefore
{(@1g®,£1) | g€ O2m + 1)} if n is even,
Gi=1{ {(®'g®,+1)|ge SO2m+1)}
U{(® 9P, £y/—1) | —g € SO(2m + 1)}
Let GO ~ SO(Qm + 1) be the connected component of the identity of G;. From the

description of Gy we see that Gy = G% x Z with Z isomorphic to Z/27 x Z,/27Z if n is
even and isomorphic to Z/4Z if n is odd. The generators of Z are (—Id, 1), (Id, —1)

if n is odd.



DENOMINATOR IDENTITIES FOR LIE SUPERALGEBRAS 45

in the first case, while Z is generated by (—Id,/—1) in the second case. It follows
that the finite-dimensional irreducible representations of G, are pairs (F, x) where
F' is a finite-dimensional irreducible representation of é? (hence of its complexified
Lie algebra 5%) and y is a character of Z.

If niseven and € € {1, —1}, we let x. be the character of Z such that x.(—1d, 1) =
e and x.(Id,—1) = —1. If n is odd we define x, to be the character of Z such that
Xe(—Id,/=1) = —/—Te. If a € Py set e(a) = (—1)Zi=1 e,

In our case the set of roots of s5 is A(C,). In the identification of h with h*
given by (, ), we see that the element H € b that corresponds to — > | ¢; has
the property that H vE = +/. Thus the parabolic subalgebra p, defined by H is

p2 = b D Z (gO)a D n,

aGA(An_l )

where n = > (g0)a is the nilradical.
a€AF(Cn)\A(An-1)

Notation 5.1. If A € (h N sS)* is such that X + p? is regular and integral for
A(A,_1), we let L*(X\) be the irreducible quotient of the py-parabolic Verma module
VZ(X) for sS.
If € (5N sS)* is such that p is reqular for A(A,_1), we let {u} be the unique
element in the W(A,_1)-orbit of u that is dominant with respect to A*(A,_1) .
Finally, we set ¢, = sgn(v), where v is the unique element of W (A,_1) such that

v(p) = {p}.

Note that
chF4(\)

— C>\+ A o
’ Ha€A+(Cn)\A+(An_1)(1 —e™)

Proposition 5.1. With notation as in Theorem [{.1], we have that, if (F,x) € X,
then there ezists a € Py and € € {1, —1} such that

F=TFg(e(@), x=Xxe

Furthermore, the h-character of the isotypic component of (Fp(e(a)), Xte(a)) in
M2 (g1) is

chV2(\)

chFa(w(p® — p1 + p(a)) — p°)

(5.18) -
[Toca+rcpara, (1 —e)

chFg(e(a)).

weWiid

+ , are defined in (59), (510)).

Proof. If (F, x) occurs in M2" (gy) then, by @), F = F(e(a)) for some a € P;. As
in the previous section, we identify M*" (g,) with P(W). Let P(W)* and P(W)~
be the subspaces of homogeneous polynomials of even and odd degree respectively.
By the explicit expression for the action of K given in [#2), we see that Z acts by
x1 on P(W)* and by x_; on P(W)~. This proves the first assertion.

Let M(a, x.) be the isotypic component of (Fg(e(a)), xe). By Theorem AT if
M (a, x.) # {0}, then

chM(a, x.) = chL*(\)chFp(s(a))

for some A € (hNsy)™.
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Observe that H acts on a homogeneous polynomial p as H - p = (—pi(H) —
deg(p))p. Since M(a, x.) = L*(\) ® Fp(e(a)), we see that we must have
€ = (—1)Oe@rm) ),

It is well known that chL*(\) = > cx,chV?(u), where A — p = D aeA(Cy) Nalt.
Since a(H) is even for any root in A(C,,) we deduce that

(5.19) chM (a Z exuchV?(p)chFp(s(a))

with € = (—1)#Fe@)+p)H)
Hence, if we set

(5200 W% = {w € Wiy | w(—ps + pla) + p°) is regular for A(A, 1)},

n

we derive from (B.I7) that

(5.21) chM(a, 1)+ chM(a,x_1) =
S cwchV2({u(-p+ pla) + )}~ p°)eh Fi((a),
weWr s,

where ¢ = Cy(—pi4u(a)4o0)-
We need to compute

(- 1)({w(*m+u(a)+pc)}*pc+6(a)+m)(H) .

For this observe that e(a)(H) = 0 and that w(u(a)) = u(a) for all a € P; and
w € W,,_q, hence

(w(—=prtu(a) + p) = p° + (@) + p1)(H)
(a)(H) + (=w(pr) + p1)(H) + (w(p) — p°)(H)
(a)(H) 4+ (—w(p1) +p1)(H) mod 2.

Since (—1)*@®UH) = ¢(a), p; — s95,(p1) = (2m + 1)6;, and v(H) = H for any v €
W(A,_1), we see that

(_1)({w(fm+u(a)+pc}*PC+€(a)+p1)(H) — ie(a) ifwe W;:id,

If w,w € W,,_q with w # w’ then W(An,l)w NW(A,_1)w" = (), hence the set of
characters {chV?({w(—p1 + p(a)+p°)} —p%) | w € W'} is linearly independent.

It follows that, if M(Fp(e(a)), Xe)) 7 {0}, then, comparing (5.I9) with (5.21), we
find

chM(Fg(e(a)), Xe(a))
— Z cwchV2({w(—p1 + p(a) + p°)} — p©)chFp(e(a)).

weW! 9 nwt
Likewise, if M(Fpg(e(a)), X—e@)) 7 {0}, then
chM(Fp((a)), X—e(a))
= Y cwchV({w(=pi + pla) + p)} = p%)chFp(e(a)).

wEW! S AW,

Since chF4(\) = 0 if A + p? is singular, (B.I8) follows.
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Finally if M(Fg(e(a)), X+e@)) = {0}, then the linear independence of the char-
acters involved implies that W' N W,j; 4 =0, hence (B.I8) holds as well. O

Let P} denote the set of all partitions with exactly j parts and set

m

(5.22) P = U P,

j=max(0,m+1—(n—d))
For max(0,m +1— (n —d)) < j <m and a € P}, we set

n—j

(5.23) v@)=— Y 66— Y b

r=n—d—m-+j r=n—j+1
Corollary 5.2 (Theta correspondence). With notation as in Theorem[{.1], we have
that
2 ={(Fp(c(a),xc(a) | a € Pa} U{(Fp(e(a)) X-cw) [ a € P}
Moreover
7(Fp(e(a)), Xe@)) = L*(—p1 + p(a))
and, if a € P, then

7(Fp(e(a)), X—c)) = L*(—p1 + V().

Proof. By Proposition B} (Fg(e(a), X4c@) € X if and only if WE , N W, =£ ().
Clearly 1 € Wi , and —p, + u(a) = 1(—py + p(a) + p¢) — p© is dominant for
AT(A,_1), hence —p; + pu(a) + p? is regular. This implies that (Fz(£(a), Xe(a) €
for all a € Py.

We now show that, if a € P, then (Fg(e(a)), X—ca))) € X. First observe that, if

P # 0, then d = m < n. Consider s = sy5,_, ... Then
s(=p1 + p(a) +p%) =
n—d—m+j—1 1 1
Z (n—m—i+§)5i+(—m— §+j>5nfdfm+j
i=1
n—j 1 n 1
+A Z | (n—m—i+§)5i+'z (n—m—i+§—an_i+1)5i.
i=n—d—m+j+1 i=n—j+1

Let o be the permutation (in cycle notation) 0 = (n—jn—j5—1 - n—d—m+j),
and let w be the element of W (A,_;) such that w(d;) = d(;). Then

ws(—p1 + p(a) +p°) =
n—d—m+j—1 n—j 1

1
Z (H—M—i+§)5i‘f Z A(n—m—i—§)5i+
=1 i=n—d—m-+j
> (n=m—i— s = (@i = )& = —p1 + v(a) + 47,
i=n—j+1

and, since a, > 1 for r > j, we see that ws(—p; + u(a) + p©) is regular for A(A4, ;).
It follows that s € W N W~ ..

n
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Suppose now that a € P;\P. Then a, = 0 for r > m — (n — d). In this case

2(n—d)

1
—p1 + p(a) + p¢ = 2 (n—m—i+5)d;
+ zn: (n—m—i+ L Ap—it1)0;.
A 2
i=2(n—d)+1

If weW, 4, w+# 1, then write w = S98;, - - - 253, with 1 <41 <<, <n-—d.
It is clear that

(w(=p1 + (@) + p9), 61y = bo(n-a)-ir+1) =
(_Pl + M(a) + pC> _5i1 - 52(n*d)*i1+1) =0,
showing that W * = {1} in this case. This proves the first statement.

n

For the second statement recall that, if a € P}, then —p; + v(a) = {s(—p1 +
w(a)+p®)} — pC. Note that, if 7(Fp(e(a)), Xae@) = L*(\) then, by (GI8), N(H) >
({w(=p1 + p(a) + p)} — p©)(H) for all w € WE ,Nn W Hence if we show that,
forw e Wr ,nW' w #1,

(=p1 + p(@))(H) > ({w(=p1 + p(a) +p)} = p)(H),
and that, fora € P}, w e W, ;N W W F 826, g

n

(=p1 +v(a)(H) > ({w(=p1 + p(a) + p)} = p)(H),
we are done.
Since v(H) = H if v € W(A,,—1), it is enough to check that, for w € W ;AW
w # 1,
(5.24) (=p1+ p(@) + p°)(H) > w(—p1 + u(a) + p)(H),

and that, fora € P}, w € W, ;N W w # 828 —d—mij>

(5.25) 52,4y (—P1 + @) + p7)(H) > w(—p1 + p(a) + p°) (H).
If w = so5, ... 505, , then (A, H —w(H)) = (N, —26;; —--- — 26;,), hence

(=1 la) + ) (H = w(H)) = 2(n — d =iy + 2) -4 2n = d = i+ ) >0,

so, using the fact that w = w™!, we obtain (£24). To obtain (B.25) we set jo =
n—d—m-+j and observe that, since a € P}, if jo < iy < n—d, then w(—p1+u(a)+p°)
is singular for A(A,,_1). We can therefore assume that i, < jy. In this case we need
to evaluate (—p; + p(a) + pc)(s%jo (H) —w(H)), which is equal to

<_p1 + ,LL(&) + pC’ 25]0 =20 —- - — 25%)

If ij, < jo then thisis 2(n—d—i1+3)+---+2(n—d—ip+3)—2(n—d—jo+3) > 0. If
i = jo then, since w # sq5, , we have k > 150 (—p1 + pu(a) +pC)(525j0 (H)—w(H))
is equal to 2(n —d — i1 + 3) + -+ 2(n —d — iy_1 + 3) > 0. The proof is now
complete.

U
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We conclude this section by observing that, as a byproduct, we have computed
the character of 7(n) for n € 3. In fact, combining Corollary with Proposition
5.1 we find (cf. (5:20) for notation)

(526) ch(L*(=pr+p@) = Y. cuchV*{w(=pi+p(a) +p9)} = p)

reg +
weW e AWt
and

(5.27) ch(L(—p+v@)= 3. cuchV?({w(—ps +p(a) + p%)} — o),

weW ' AW,

where ¢, = Cy(—pi4pu(a)+5°)-

If A € (hNs$)*, let Wy be the subgroup of W(C,) defined by Enright in [2,
Definition 2.1]. In our context, W) is the subgroup, generated by reflections in
roots a = d; + 05, such that:

i) (N, aV) € 279

(i) peA, (NG =0 = (o,p)=0.
Following |2, Definition 2.1], we introduce the root system A, as the set of the roots
« such that s, € Wi. Set Ay(A,—1) = AxNA(A,1), AT = ATNA,. Let also
Wi (A,—1) be the Weyl group of Ay(A,,_1). We denote by ¢, the length function in
W), with respect to A} and let Wi be the set of minimal length coset representatives
for Wy (A,—1)\W,. In [2, Corollary 2.3] Enright proved a character formula that
holds for any unitary highest weight module of a classical real reductive group.
This formula is also implied by a stronger result proved in [3]. In the following we
show how Enright’s formula for L?(—p; + u(a)) and L*(—p; + v(a)) can be derived
combinatorially from (5.26) and (5.27) respectively.

Corollary 5.3. Ifa € Py and \g = —p; + p(a) + p©, then
ch(L*(=p1 +p(@)) = D (=1)*VE({w(ro)} = p).

weW;f‘O

Proof. Fix a € A and consider A\, whose coordinates in the basis {J;} are of the
form

v=_(v1,...,0)=(n—m+gn—m—3, .. . 5 —3—bi,....,—3—bp),

where b; = a,,, ;11 +¢— 1. We say that a positive entry a in v is singular or regular
according to whether —a appears in v or not. The group W), acts on \g as follows:
it is the identity if the number of regular entries is less or equal than one; if there are
exactly two regular entries, then the only nontrivial action is given by exchanging
positions and changing signs of both regular entries; if there are more than two
regular entries, it acts by an even number of sign changes of the regular entries
followed by a permutation of the result. All other entries are fixed.

If € W, then it acts on Ay by changing signs of some regular entries. Let
w, be the permutation that arranges the result in decreasing order. Since the set
W NW' is a set of coset representatives for Wy, (A4,_1) in W),, we see that

W = {w,x | 2 € W, nW,“} (notice that this is true also when there are only
two regular entries). Let w/, be the unique element of W (A,,_1) such that w/w,z(\o)
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is AT(A,,_1)-dominant. Since sgn(x) = 1, it follows from (B.26]) that

(L (—py+p@) = S sgn(wlua)V*{wsr()} — ).

zeW ,AWred,

To obtain our result we need only to prove that sgn(w’) = 1. We shall prove this
claim by induction on n — m. Let s be the number of singular entries in v and
let ¢ > 0 be maximal for which v, ¢, ..., 0y, are singular. Set v/ = w,z(v).
We want to prove that arranging v’ in decreasing order involves an even number of
simple transpositions. If z does not change the sign to vy, then induction applies in
a straightforward way. Otherwise we have v/ = (v}, ..., —U1, Un_m—ty s Unmy - - -)-
In making " dominant for A,,_; we should pass —wv; through the ¢ singular values
and the s negative values corresponding to negatives of the singular entries. So we
obtain after s + t simple transpositions the element

1/ /
V= (U], e Unmty oo oy Unmy e,y —Uly e e ).
s entries
Consider now the vector
_ _ 1 3 1 1 / 1 /
U= (Up,...,up) =M—m—g5,n—m-—735,...,5,—5—b,....,—5—=0,.)

with b, =0, fori=1,...,5, 0, = —x,and b = b;_y fori =s+2...,m+ 1. Let
y = S5, ¢ and set v’ = w,(u). Observe that v" is obtained from u' by performing
exactly s — ¢ simple transpositions. Hence v’ differs from «’ by an even number (2s)
of simple transpositions, and we can apply induction. O

Corollary 5.4. Ifa € P and \; = —p; +v(a) + p©, then

ch(L*(—p1+v(@)) = Y (D)™ ({w(r)} - o).

weWﬁ

Proof. Assume a € Aj and let o be the permutation described in the proof of
Corollary 5.2l Let w be the element of Wy, _, such that w(d;) = ;) and set
8 = 825, 4_my, Recall that ws(Ag) = Ay,

We now show that Wy, = wW,,w!. For this it is enough to check that a
satisfies conditions (i) and (ii) for Ag if and only if w(«) satisfies both conditions for
A1. This is clear if (o, §—g—m+;) = 0, so that s(a) = . If @ = 6,—g—m+j + 9;, With
n—d—m+j < i < n—j, then a does not satisfy condition (ii) and, if i > n—j then it
does not satisfy condition (i). On the other hand (w(a)¥, ws(Ag)) = (s(@)¥, Ag) < 0
so w(a) does not satisfy condition (i). It remains to check the case when a =
0i +0p—d—m4; With i <n—d—m+ 7. In this case one checks readily that a satisfies
condition (i). On the other hand s(a) € AT(A,_1), so (s(a)Y,\)) > 0, hence
(w(a), ws(Ag)) > 0. If B is a root such that (3, A1) = 0, then (sw™*(3), \g) = 0, so
(a, sw™1(B)) = 0. If (o, w™1(B)) # 0 the only possibility is that w™(3) = +a, but
this implies (s(a), Ag) = 0. This contradiction implies (o, w™'(8)) = (w(a), ) = 0.
This shows that if « satisfies condition (ii) then also w(«) does. Reversing this
argument we obtain that if w(«) satisfies condition (ii), then also « does. This
proves our claim.
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Notice now that w(Aj{O) = A;\rl, thus W)ﬁ = wW)‘é}w*I. By applying (5.27) we
can write

ch(L*(—py + v(a)) = Z sgn(wiw,)chV?({wwgsrsw™ (M)} — p©).

€W W,

As shown in Corollary B3] sgn(w.,) = 1, so we need only to show that sgn(w,) =
sgn(wwgswsw™t), or, equivalently, that sgn(w,) = sgn(w,s). Recall that, for y €
W9 w, is the unique element of W) (A,_;) such that w,y(X) is dominant for
A;O(An_l). Since s(Ag) is dominant for A;\FO, it follows that w, = w,, and we are
done. O

Remark 5.1. It should be noted that, even though the proofs of Proposition [5.1]
and its corollaries do not use classical invariant theory, they depend on Theorem
[l which uses in a crucial way the first fundamental theorem of classical invariant
theory for O(2m + 1).

6. THETA CORRESPONDENCE FOR THE PAIR (Sp(n), SO*(2m))

In this section we use the denominator identity developed in the previous sections
to derive the Theta correspondence for the compact dual pair (Sp(n), SO*(2m)).
This dual pair, according to Proposition .8 corresponds to the distinguished sets
of positive roots A}, and A}, in a superalgebra of type D(m,n).

We will develop the theory only for Aj,: the formulas corresponding to Af,,
are obtained by simply applying the reflection s., to the formulas corresponding to

A,
We have, for 1 <i# 7<m, 1 <k#Il<n,

{ei —€,0,— 0, | 1 <i<j<m,1<k<l<n},
AT ={e+6, 1 <i<m,1<k<n}

We have 2p; = (2n)(e; + ... + €,) and, as in type B(m,n), the defect of g is
d = min(m,n). Set also
AD,)==x{e, e |m—r+1<i#j<m},
A(A, ) =He—¢g|m—r+1<k#Il<m}.
Let W(A,—1),W(D,),W(C,) be the Weyl groups of A(A,_1),A(D,),A(C;), re-
spectively. Set AT(C,) = A NA(C,), AT (D,,) = A NA(D,,), and AT (A, 1) =
Af N A(A,,_1). We denote by p©, pP, p? the corresponding p-vectors. Set
(6.2) W, = subgroup of Wy generated by {s.s., | 1 <1 <j <7}

With notation as in Section Bl the total order corresponding to this choice of
AT is

€L > > 6y >01 > >0,

There is only one arc diagram associated to this total order, namely

X = {€m517 cees 6m7d+15d}-
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The corresponding maximal isotropic set of roots is S(X) = {y1,...,74}, where

(6.3) Y1 = €m — 01, V2 = €m—1 — 02, ..., Yd = Em—dt1 — 0.

We want to apply Proposition with B = Supp(X). Note that, with notation
as in B2 A(B') = A(Dy) x A(Cy), and we have that A*(B') = A(Cy), so that
WeWHB') = W (A4 1)W(Cy). With notation as in (62), set

Zy = (W(Ap1)/W(Ag1))Waa(W(Cyr) JW (Ca))
and, if m > n,
Zy = (W(An-1)/W(Aa-1))Win-dSe,,_iSem—ass (W (Crm) /W (Ca)).

Then we can choose Z = Zy if m < n and Z = Zy U Z; otherwise.
We define

W = W<Am71)Wmde<Cn>
so that we have Wy = W if m < n and while W, = W U W, with
Wi = (W(An-1)/W(Aa-1))Win-aSe_aSep—as: W (Aa-1)W(Cy)

otherwise.
If m < n, by Proposition 3.8 we have

(6.4) epR:ﬁW(Hjl(l _GM)).

If m > n, Proposition gives
ef e

H;lzl(l — e[hj]])) +Fm (H;.ll(l — e*[hj]])

Lemma 6.1. If m > n then

2€pR = ﬁW (

).

ef

H?:l(l - e—[[m]))'

(6.5) Fw (

e’ F
H;l:1(1 - G_MH)) = Fn
In particular (©4) holds for any m,n.

Proof. We need only to check that Fy (P(X)) = Fw,(P(X)). Since right mul-
tiplication by Wgy(x) stabilizes both W and W;, we can apply Corollary
to both sides of (G.H). Since odd reflections only change the sign of P(X), by
applying a series of odd and interval reflection to both sides of (GH]), we are re-
duced to checking that Fiy (P(X")) = Fw,(P(X')), where X' is the arc diagram

X" = {€en_nsidi| i = 1,...n} whose underlying order on B is ¢ > -+ > €,,_q11 >
01 > €m_gio > 0y > -+ > €, > 0,. Let Y/ be the arc diagram X’ seen as a diagram
on B ={emn_ayi | 1 <i<dyU{d |i=1,...,d}. Since all simple roots of B” are
isotropic, we have (px, @) = (pyr,a) =0 for all « € A(B") so

Fw (P(X)) = FW (AW (Aa )W (€5 72 Fivayyw(cy (P(Y))

Since all simple roots of B” U {¢,,—q} are all isotropic, we see that (px/,€n—q) =
0. Clearly (py/,€m—a) = (7,€ém—q) = 0 for all v € S(Y’). Thus, setting s =

Sep—aSem_ar1> We have

ﬁW1 (P(X)) = f(W(Amﬂ)/W(Ad—l))Wm—d (erl_pY,ﬁSW(Ad—ﬂW(Cd)(P(Y,))a
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hence it is enough to check that Fy(a, yw(cy) (P(Y") = Fawa,_nwcy(P(Y"). It
is enough to verify the s,  -invariance. However,

fW(Ad_l)W(cd)(P(Y/)) = d!];’y/epy’

and this, up to a sign, does not depend on the choice of simple roots for A(Y”).
Taking a system of simple roots containing d; & €,,_q41, we realize s, _,., as an

automorphism of the corresponding Dynkin diagram so Ry-e”Y’ is s, -invariant.
O

For a € P;, define
d

wa) = — Z(adJrlfr)EmfdJrrv e(a) = Zar(sr

r=1

If X € span(e;), set

(6.6) chFa(\) = Z sgn(w)

wEW (Am—1)

ewA+ph)—pt

Maea+a, )L —e @)

Arguing as in the previous section, it follows from (6.4)) that

hF DY _ D
67) M @)= 3 ° alwzp @) T 07 =00 g (o (a),
acPy wEWy_qg HQGA+ (Dm)\AT (Ap— )<1_e )

Fe(e(a)) being the finite-dimensional irreducible sp(n)-module with highest weight
e(a).

Recall from section [] that we constructed a real symplectic subspace V of g;
and a map ¢ : V — (H")* @y H™, such that there is a dual pair (Gy,G2) in
sp(V, (-, -)) having the properties described in Proposition .8 We look upon Sp(n)
as a subgroup of Sp((H")* @y H™) via its action on the first factor. Then G; =
{7 1gd | g € Sp(n)}. Tt follows that, if ®~Lg® € G4, then, since Sp(n) is compact,
connected and simple,

dety (P 1g®) = 1.
Therefore B
G1 = G1 X {:l:l}

Given a representation (m,Vy) of G; = ®71Sp(n)®, we let (7, V) be the repre-

sentation of G on the same representation space such that

(6.8) (g1 2)(v) = 2 7 (g1) (v).
If 2 is the set of finite-dimensional irreducible representations of G, then we know
from ([@2)) that the set 3, occurring in Theorem [.1] is a subset of Q = {7 | 7 € Q}.

Proposition 6.2. With notation as in Theorem[{.1], we have that, if T € 3, then
there is a € Py such that

T = Fc<€<a)).
Furthermore, the h-character of the isotypic component of Fe(e(a)) in M2 (gy) is
hF4( — P
(6.9) Z chFal it @) = 07) o pte(a)).

W HaeA+ (D )\AT (A 1)(1 —e %)

Proof. Clear from (IB]) O
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In the case in question the set of roots of s5 is A(D,,). In the identification of h
with b*, given by (', ), we see that the element H € b that corresponds to > " ¢
has the property that H vE = +1. Thus the parabolic subalgebra p,, defined by H,

1S

p2=0H6 Z (80)a ® 1,

aEA(Amfl)

where n = > (80)a is the nilradical.
Q€A (D \A(Am-1)
We use the notation 5.l Again we remark that

ChFA()\)

= C)\Jr A o
. Haem(Dm)\m(Am,l)(l —e?)

chV*(\)

Corollary 6.3 (Theta correspondence). With notation as in Theorem[{.1], we have
that

Y = {Fq(e(a)) | a e Py}
Moreover, if a € Py, then

7(Fo(e(a)) = L (—p1 + pla).

Proof. By Proposition 5.2, we need only to check that Fi(e(a)) € ¥ for all a € Py
Clearly 1 € Wy—q and —p; + p(a) = 1(—p1 + p(a) + p”) — p” is dominant for
AT (A,,_1), hence —p; + p(a) + p# is regular. By Proposition B2 this implies that
the isotypic component of Fi(e(a)) has a nonzero character, thus Fo(s(a)) occurs
in ¥ as wished.

For the second statement, arguing as in the proof of Corollary £.2] we need only
to show that, for w € W,,_4 with w(—p; + p(a) + p) regular for A*(A,, ;) and
w # 1, we have that

(=p1 + p(@)(H) > ({w(=p1 + p(a) + p7)} = p”)(H).

Since v(H) = H if v € W(A,,_1), it is enough to check that, for w € W,, 4,

w# 1,
(—p1+ p(@) + p”)(H) > w(—p1 + p(a) + p”)(H).

This is clear because, if w = s, ...s, , then (\, H —w™'(H)) = (A, 2¢;, +- - -+2¢;, ),
hence

(=1 + (@) + pP)(H —w (H)) = 2m —d —ir) + -+ 2m — d — ix) > 0.
The proof is now complete. O
As already observed in Section[5, we have also computed the character of 7(F¢(£(a)).

In fact, letting W/, be the set of w € W,,_4 such that w(—p; + p(a) + p”) is
regular for A(A,,_1), then, combining Corollary with Proposition [6.2] we find

(6.10) ch(L*(—p1+p(a)) = > cwsgn(w)chV>({w(—py + p(a) + p”)} = p"),
wEW:nefd

where ¢y, = Cy(—pi+p(a)+pP)-
The argument given in Corollary works also in the present case thus, with
notation as in Section [B we obtain
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Corollary 6.4. If a € Py and \g = —p1 + p(a) + p?, then

ch(L*(=pi + p(@)) = Y (=1)V2({w(ro)} - pP).

wEW;‘O

7. THETA CORRESPONDENCE FOR THE PAIR (O(2m), Sp(2n,R))

This is the most difficult case. Complications arise from the representation theory
of even orthogonal groups, which we now discuss. Let V' be the real symplectic
subspace of g; and ® : V — R?*™ ® (R?")* be the map such that there is a dual pair
(G1,Gs) in sp(V, (- ,-)) having the properties described in Proposition .8 We first
parametrize the representations of Gi: the same argument given in Section [Blimplies
that Gy is the group of pairs (?1¢g®, z) with g € O(2m) and 2% = (detgem(g))". If
Q) is the set of finite-dimensional irreducible representations of Gy, then, by (£2]),
we know that ¥ C {7 | 7 € Q} where 7 is as in (6.8).

To describe €2 we need to recall that G; ~ O(2m) is isomorphic to the semidirect
product of Z/27 with SO(2m). The generator = of Z/27 in G can be chosen so
that Ad(z) induces on h N s the reflection s,,,. The finite-dimensional irreducible
representations of (G; are determined by their restriction to the connected compo-
nent of the identity G ~ SO(2m) of G; and by the action of x. First of all, we
parametrize the irreducible finite-dimensional representations of GY as irreducible
finite-dimensional representations of 5%: having chosen h N st as a Cartan subalge-
bra, we choose AJ NA(s$) as a set of positive roots for 5, where Af is as in (E1)),
and let pP be the corresponding p-vector. Given A € (h N st)* dominant integral,
we let Fp(\) be the irreducible finite-dimensional sT-module with highest weight .

If A= 2?21 a;e; with a; € Z and a1 > ay > -+ > a,, > 0, then there is a unique
irreducible representation of G, that restricted to GY contains Fp()\). We denote
this representation by F™()); it can be checked that the restriction of F()\) to GY
is

Fp(A) = Fp(A) © Fp(se, (V).

If instead a,, = 0, then there are two irreducible representations of G; whose
restriction to GY contains Fp()). Both restrict to GY as Fp(A), and we let F7(\)
be the one such that x acts trivially on the highest weight vector, and F'~(\) the
one such that = acts by detgzm(x) = —1. Note that this parametrization depends
on the choice of z.

We also need Kostant’s generalization to nonconnected groups of the Weyl char-
acter formula, given in [I6], Theorem 7.5]. In the particular case at hand, we let T be
the torus in G such that the Lie algebra of T is contained in . Set H™ = T UzT.
The group H* is the normalizer of the torus 7' and of the Borel subgroup of GY
corresponding to our choice of positive roots. Then Kostant’s formula in this case
reads

1+ (—1)°

(7.1) chps o (2°t) = chFE(A)(1)
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if A=3"", a;e; with a,,, > 0, while, if a,, = 0,
14 (-1)°
2
1 — (=1)* wew(c,,_,) sgn(w)er )

2 Ewew(cm_l) sgn(w)ew(®?)
where W (C,,—1) is the Weyl group of the root system
ACh1) ={F(e—¢€)|1<i<j<m-—1}
U{x(ei+¢)|1<i<j<m-—1}

(7.2) chpes (o (2°t) = chFp(\)(t)

+ (t),

Note that, since pP = S>7" ' (m — i)e;,
Z sgn(w)ew(pD) =" H (1 —e9),
weW (Crm—-1) aeAT(Cpm—1)
where
AT (Cpa)={(e—€¢)|1<i<j<m-—1}
Uf{(e+e¢)|1<i<j<m-—1}.

Set by = hNsS. We need to compute the H+ x hy-character of MA+(gl). In this
case
and 2p; = (2m) (01 + ... + 6p).

Let ad be the adjoint action of go on gi. Recall from Section H that, as G-
module, M2" (g1) is given, up to the action of the center, by the action of Gy on a
polynomial algebra P(1/'). The differential of this action on W coincides with adl*sg

n (gy)*. Hence we can identify P(W) with the symmetric algebra S(g;) with s¢
acting by ad. Let us denote by Ad the action of G; on S(g; ) coming from its action
on P(W). We normalize the choice of z by assuming that we can choose the root
vectors X 5,4, in g7 in such a way that

Ad(x)(X_s,4¢;) = X 5,4
if 7 <m, and
Ad(2)(X_s,46,) = X_5,—ep-
Clearly, if t € T' X hg, then
e P
[locar(1—e7?)

In order to compute chy+p, M2 (g1)(2t) we simply compute the trace of the
matrix of the action of xt in the basis given by monomials

H Xalg —+€; 75 —€;°
If X\ is the h-weight of this monormal then

a;j aij bim X %im
Ad ZL‘t HX 5+€JX 8; e] _6 H X 5i+e] 5 —€5 H X7 —6i+em ,52.,67”).

2,] 1<i<n 1<i<n
1<j<m

ChH+><h2MA+ (g1)(t) =

().
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Thus the only contribution to the trace is given by the monomials

Qij bij Aim
T %% X% TT (oK

1<i<n 1<i<n
1<j<m
It follows that
—m
hire v, M2 (a7) (xt) = ‘ ).
& H+><h2 (gl )('x ) H 1<§z§n (1 _ e—é,:l:EJ) H1<i<n<1 _ 6—26z)< )
1<j<m - =
Putting everything together we find that
_ 1+ (=1)° e
(7:3)  churnn, M™ (g7)(2°1) = — (1)
. ' 2 Haeaj(l —e %)
1—(=1)° e~
+ (=1) e ——(1).
2 Jlisisn (1= e79%9) [[1je, (1 — €72%)

1<j<m

We now apply our denominator formulas to the two summands above. We start
with the first one: again the defect of g is d = min(n, m). We set

A(D,) ==x{e; £, |1 <i#j<r},
A(Ar,l):i{ék—él |n—r+1§k§£l§n}

Let W(A,—1), W(D,), W(C,) be the corresponding Weyl groups. In this case
2p1 = 2m > " 6. Set AT(C,) = Af NA(C,), AT(By) = Af NA(B,,), and
AT (A1) = AFNA(A,_1). We denote by p©, pP, p” the corresponding p-vectors.

With notation as in Section Bl the total order corresponding to this choice of
AT is

0 > >0, > € > > €.

There is only one arc diagram associated to this total order, namely
X = {0ner, ) Onarical.
The corresponding maximal isotropic set of roots is S = {v,...,74}, where
(7.4) V1 =0n—€1, Y2 =0n_1—€2,...,Y4 = On_qs1 — €4
Applying formula (ILTH) we can write
ept iz il
H?:1(1 — )

Recall from (G5.8) that W, is the subgroup of W, generated by {sa;,
Define

(7.5) e’ R = Fyps (

i=1,...,r}.

Wge” = reflection group generated by W; and the reflections s,
W (B,,) = subgroup of W;*' generated by W(D,,) and s.,.

Extend sgn’ to W™ by setting sgn'(s,,) = 1. We define
W = W<An71)Wn7dW<Bm)7 WD = W<An71)Wn7dW<Dm)
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If n < m then W* = W(D,,) hence, summing over W(A,_;), we find
eP i il

ngl(l —e %)

we can rewrite ([.0) as

(7.6) dle’R = Fw, (

Pt 11

ince s, fixes S————
5 em ¢y (1—em )

eP il - eP il )
H?:1(1 —e7%) e H?:1(1 —e)"

The same argument given to prove (0.12) gives

d!epR = fw(

i v A

If n > m then W# = W (C,). By an explicit computation we see that p+ 3¢ Jy:[=
Yort(n—m—i+1)d;.
Set

(7.8) Va4 = subgroup of W;*" generated by {sas

n—it15€; 1 <1< d}

We have that sa5,_,,,50(0+ Y, Tnul) = p+ T, Tl hence

/( ) 6p+zg:1ﬂphﬂ 6p+zzd:1]]fylﬂ 6p+21d:1]]72|1
SYN 826, _i415€;)526n—iv15e; =g N p R —.

ML0-ev)  L0-ev) Ta0-c)
It follows that, if w = Hle 526,415, Sei, € Va, then

ep‘f'ztz'i:l}]'ﬁ II

sgn’ (w)w — _)Mi .
gn'(w) H;lzl(l —e ) Jc{;___,ik}< ) Hj¢J<1 — e )

Note that if |J| > 2 then there is a reflection in W (A,,_1) that fixes the element

d
eP+Ei:1]]'Yi[[
T, (e ) hence

F ( '(w) et izl 7 et il b eP il )
w(sgn'(w)w— —) = Fw (=, — - ).
[Tjm (@ —e™) o —em) i T, (L= e7)

Note that
eP i il eP il

n*jh+175n7d+18€jh*€d<Hj7£jh(1 — 6_71') - Hj;ém(l — 6_71')’

hence, if w € Y,;, we have

S5

ep‘f'Z?:l}]'Yi II

Fuw (sgn’ (w)w
W( g ( ) H?:1(1 - 6*71')
5} ep il eP i il
= Jwl=g 1) k=i 1— o )
Hj:l( —e7) Hj:l( —e7)
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Using the fact that Wge” = WY, and that seiepR = e”ﬁ’, it follows that
24dle’ R =

g eP i Il 3 eP i Il
.ngext a - .FWyd 4 -

Hj:l(l —e7%) Hj:l(l —e7%)

§ eP il o eP il
2d‘7:W( d ,,)_Qd ld]:W( d—1 N/
Hj:l(l —e7%) Hj:l(l —e7%)
Hence
(7.9) N R— F ( ep izl ) ldf ( eP il )
. le’R = — = .
T —es) 2T I 1 e )
Set W' = Wis,_,.1.eq- Using the fact that W,_4 and W’ commute, we can choose

W/W' = ((W(A,_1) X W(B))/W)W,_4.
Let Y be the arc subdiagram corresponding to the interval [0, 4.1, €q4). Applying
(LIH), we have
ep izl epy Tl

W — JfW/W’ ePXTPY Fu
o0 e ( o)
— ]I“W/W/ (epx—pyd!epyj%y)

Observe that ht(vy;) = 20 — 1 so Hle MO+l _ ), Applying (3.9) to Y we find

))-

€P+Z‘f:ﬂ]%‘[[ ) ]:_ ( ox =y I F ( ePYy
— (ePx—PY ) ,
v H;izl(l — 6_’71') wiw W Hf:l(l — 6_[[’Yiﬂ)

hence

; et il
(7.10) Fw (

) = diF (=),

H;l:1(1 —e7%) H?:l(l — e~bil)
Analogously one checks that
et Eicalnl 5 ep+1al
= (d —1)\F .
ITj= (1~ ey =Y W(H;Lia —e~lul)
Observe in (ZIT) that Jv4[= [v4-1], hence

ertlval e eptlvi-1]

- + F
[Tj=i (1 —e bl ITj=i (1 - e“%'ﬂ)) W(Hj;fa —e-lul)

(7.11) Fw (

(7.12) Fw(

) = Fuw(

and the second summand in (.I2) is zero since the reflection s, ,_., fixes it. Plug-
ging these formulas in (Z9) we find

. . e’ 1. e’
7.13 e’R = F — =F .
( ) W(H;.lzl(l — e[[“/ﬂ])) 2 W(H;l:i(l — e[hj]]))
Finally, observe that W = Wp U Wps,, and s, fixes Hd_l(le—p,[h.]]), SO
j=tUme Y
o

(7.14) "R = ﬁW(H;l:1<1 — e[mﬂ)) — Fw (

[0 — e bl)
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To give a uniform treatment of the cases n < m and n > m, we set d; = min(n, m—

1) so that (C.I4) and (7)) combine to give

) P mn)
— Fw 1 —).
H;l:1(1 - ef[hjﬂ) i H;l:1(1 —€ [h’}])
Set PI = {a € Py | a, > 0} and PY = P;\P}. Clearly, if d < m then P} = ) and
PY = P,. Dividing (Z.IH) by Dy = e HaeA(f(l — e~ %), we find that, arguing as for
type B(m,n),

(7.15) e’ R = F (

e A1 1 - d - d
[ FW 60_21:1 ai7Yi + FW eP_Z¢:1 ;7Y
Mo (o) By (2 (50 2 F )
1 aePd7L aclPy
Since Dy = e [Toca+cny(d — e~ )er” [Toca+(p, (1 —€™®), we can rewrite the

above formula as
e M

l_IozeA;r (1 - eia)

chFa(w(—p1 + p(a) +p~) — p
- Z Z sgn'(w) I1 1—e)
aeAT(Cp)\A+(Ap—1)

(7.16)

)

chF} ((a))

ae]}‘D} WEW, _a

+ Z Z Sgn'(w) ChFA(U}(_pl + ,u<3—> + pi) tapC)ChFD(ff(a)).
Haear@mara, =€)

acPf weWn _q

Here we recall that, if a € Py, then pu(a) = — Zle(adﬂ_r)én_dw, e(a) = Zle arEr,
and chF4(A) is given by (B.14).

We now take care of the second summand in (73]). Note that

— C —a D Y
e PleP Ha€A+(Cn)(1 —e )ep Ha€A+(Cm_1)<1 —e )
[Lisicn (1 —e72%9) []icic, (1 — €72%)

1<j<m

— = —a),pP —a
e e [aeariony( =€) Tlaenric, (=€)

1<i<n (1 — 6_5ii€f) ’
1<j<m

and that

n m—1
pC A" —pr =) (n—(m—1) =)+ Y (m—i,
i=1 i=1
so the formula above is precisely the denominator for the distinguished Borel sub-
algebra of type A}, for a superalgebra of type D(n,m — 1).
We can therefore apply the results of Section [0l and find that

_ c o oD .
e PLeP HaEA*(Cn)(]‘ —e )Gp Ha6A+(Cm71)(]- —e )
[T 1cin (1 — e7%%65) H1§i§n<1 — e 20i)

1<j<m

. ef
= Fw(m— )
v ()
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where W(m — 1) = W(A,_1)Ws_a,W(Cp_1). Recall from (£3), (5I0), that W, "
(resp. W, ") is the set of w € W, such that w = 953, - - - S26;, with &k even (resp.
odd).

By dividing off e”” [Tocar (1 — e~ )er” [Toca+c,, (1 —e™) and expanding
the denominator, we find

(7.17) sy (M2 (g1)) (2t) =
Z( Z Sgn(w)chFA(w(—p1+,u( a) + p°) — pC)X

[oea+copasa, ol —e™*)

0 +
acPy wew,” 4

ZwGW(C ) Sgn(w)ew(a(a)"’ﬂD)
x = 57— (1)
D weW (Con1) sgn(w)e®(?)

Recall that, if 7 is a finite-dimensional representation of Gy, then 7 is a repre-
sentation of GG; whose definition is given in (68]). We can now state

Proposition 7.1. With notation as in Theorem[{.1], we have that, if T € 3, then
there is a € Py such that
7= F*(e(a)).
Furthermore, if a € P}, then the H' x hy-character of the isotypic component of
Ft(e(a)) in M2 (gy) is

chFa(w(p® — p1 + p(a)) — p°) +
7.18 sgn(w chy+F ,
T we%d i Maearcnar i, —e™) )

while, for a € PY, the H' x hy-character of the isotypic component of F*(e(a)) is
hF c— —p¢
(7.19) Z sgn(w)c A(w(p” = p1 + p(a)) 7/; )

chy+ F*(e(a)),
HaeA+(cn)\A+(An,1)(1 —e )

weWiE_d

Proof. Tt follows from (ZI8) that F=(327", a;e;) can occur in M2" (g,) only if a; = 0
for ¢ > d. This proves the first statement.

It is also clear from (7.16) and Kostant’s formula (7)) that, if a € P}, then the
isotypic component of F'*(g(a)) is given by (ZIS).

If a € P, let M, be the sum of the isotypic components of F'*(£(a)) and F~(g(a)).
By substituting (ZI6) and (C.I7) in ([Z3]), we find that

ChHerbz(Ma)(xSt)
_ 14 (=1)* Z sgn(w)ChFA<w(_p1 + p(a) +p%) = p%) x chy(Fp(e(a))(t)

wEWy, _q HaEAJr(Cn)\AJr(An_l)(l - e*a)

1—(2—1)8( 3 sgn(w)chFA(w(—p1+u( a) +p) = p°)

+

wewr eear@enatnn(l =€)
n—dy

EweW(Cm_l) Sgn(w)ew(E(aHpD)
X
D e W (Con 1) sgn(w)e”?)

Observe now that, since a € Py, then s_y5,_, fixes —py + p(a) + p¢ so, if w =
w's_g5,_, with w' € W~ then sgn(w) = —sgn(w') and w(—p; + p(a) + p°) =

(t))-
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w'(—p1 + p(a) + p¢). Combining this observation with Kostant’s character formula
([C2), we can rewrite the formula above as
chir+ iy, (Ma)(2°t)

— sgn(w chFa(w(=pi + pla) + p7) - pC)chH+ Fte(a))(z5t
> sgn(w) Lone o mrin, (1= ) (£ (e(a))(z°t)

wEW:_d
hF — Y —p°
+ 3 sgn(w)* alwlzp @) T 00 =00 g (o(a) (o),
wew, Hoearcapariann(l =€)
n—d
from which ([Z.I9) follows readily. O

In our case the set of roots of 55 is A(C,,). The element H € h that corresponds
to — > | d; has the property that H|V(Ci = 4/. Thus the parabolic subalgebra ps
defined by H is

p2 = b D Z (g())a D n,

aGA(An_l )

where n = > (80)a is the nilradical.
a€AT(Cn)\A(An—1)
Recall that, if P is as in (5.22]) and a € P, then we can define the weight v(a) as
in (5.23). Using Notation 5.0l we can now state

Corollary 7.2 (Theta correspondence). With notation as in Theorem[{.1], we have
Y ={F*(c(a)) |ae P} U{F (¢(a)) | a € P}.
Moreover .
T(F'(e(a))) = L*(=p1 + p(a)),
and, if a € P, then .
T(F~(e(a))) = L*(=p1 + v(a)).

Proof. Using Proposition [I.I], the proof follows exactly as in the proof of Corollary
5.2 O

As already observed in previous sections, we have also computed the character
of T(F*(c(a)). We set, as before, W' to be the set of w € W,_4 such that
w(—p1+p(a)+ p©) is regular for A(A,_1) and, for w € Wi™, ¢y = Cu(prtu(a)+5¢)-
Then, combining Corollary with Proposition [l we find that, if a € P, then

(7.20)  ch(L*(—py + p(a)) = Y cusgn(w)chV*({w(—p1 + p(a) + p)} — o),
wEW'es,

while, if a € P, then

(721)  ch(L*(=pr+ (@) = Y cwchV>({w(—p1+ p(a) + p°)} = p°),
weW, ,nwred,

and, if a € P, then

(7.22)  ch(L*(=pr+v(a) = = Y cwchV2({w(—p1 + p(a) + p°)} = o).

weW_ AW,

The argument given in Corollary works also in the present case, thus, we
obtain



DENOMINATOR IDENTITIES FOR LIE SUPERALGEBRAS 63
Corollary 7.3. Ifa € Py and \g = —p1 + p(a) + p©, then
ch(L*(=p1 +p(@)) = D (=1)*VE({w(ro)} = p).

wEWA’%
Ifa€P and \y = —p; + v(a) + p°, then
ch(L*(=pr +v(@) = Y (1) OVE({w(r)} = p).

weW;f‘l

8. THETA CORRESPONDENCE FOR THE PAIR (U(n),U(p,q))

In this section we use the combinatorial machinery developed in the previous sec-
tions to derive the Theta correspondence for the compact dual pair (U(n), U(p, q)).
This dual pair, according to Proposition [£.8 corresponds to the distinguished sets

of positive roots Agl)’q) in a superalgebra of type gl(m,n), p+ q = m.
Let g = gl(m,n). Its Weyl group is
W, = group generated by Se, ey, e 1—ems S61—621« -+ > S6n_1—6ns
which we identify with S, x S,,. Recall that the defect of g is d = min(n, m). Set
A(An-1) ={e—¢ |1 <i#j<m},
A(An_l) :{5k_5l | 1 Sk#lgn},
AA, axAq)={a—¢g|1<k#I<porp+1<k#Il<m},
Ac = A(Ap_l X Aq—l) U A(An—l)
Let W(A,_1) be the Weyl group of A(A,_1) and W(A,,—;) the Weyl group of
A(A,,—1). Let W, be the Weyl group of A, (the subscript “c” stands for compact).
Set A+(An_1) = A(—)’— N A(An—l)a A+(Am_1) = AS_ N A(Am_l), and A+(Ap_1 X

A1) = AFNA(A, x A1), We denote by pAn=1 pAm=1 pP4 the corresponding
p-vectors.

Set
L={ief0,....p}H0<d—i<q}
Set imae = min(n, p) and Jpm = d — ipee. For o € 5, set
’I’Ll(O') - I{O(Z) | p— Z.maar +1 S { S p+]mzn} N {17 s 7p}|a
Ui ={w € S| ni(o) =i}.

Then Sy, = [1;c, Us.

With notation as in Section 3 the order corresponding to Ag;’q) is

€1 > > € >0 > >0, > €1 > > 6y

Define, for i € L, 8i = €, 441 — 6 for 1 < t < i and 7} = 0, 11 — €14p for
1<t<d—i. Forie L, let X; be the arc diagram

Xi ={ep1310¢] 1 <t <} U{0p—rr1€pre| 1 <t <}
Then
(8.1) S(X)={8|1<t<i}u{y|1<t<d—i}.
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We start by writing formula (LIH) corresponding to S(Xj;,,.), which, for sim-
plicity, we denote from now on by S. Let W/ (resp. W) be the subgroup of S,
that fixes 1,....,.p—iand p+d—i+1,...,m (resp. p—i+1,....p+d—1i). Set
W, = I/VZmax and Wy = W;ma" Then U; is stable under the right action of Wy, Ws,
and under the left action of S, x S,. Choose V; C U; such that U; = V;IW;. Let W/
be the subgroup of W, stabilizing Vi and set V/ = V;/W/.

Assume that n < m. By the above, using notation of Section [[L2]

Re’ = Fs, (2(Xi,...)) = Y Fu,(Q(Xi,...)) = > Fur(Fw, (X))

i€l i€L

max

sponds to the interval [v, w]; note that S(Y') = S(X;,,.) and each vertex of Y is an
end of some arc. Moreover, W, ,,; = S, X W; and we may choose Wt for Y to be
either S,, or W;. One has

Fi (QXian)) = 77 Fr, (QY) = & 5, (QUY)),

Set U = €p—ipontls W = €p—i,.td; let Y be the subdiagram in X; .. which corre-

hence
Rep Z.Fv/ e~ PY.FS (Q( ))) |m1/,| (fv/(fWS (ep pY]:Sn(Q( )))
1
- 7 (B (00X,..))

Since the elements of V; C S,,, commute with the elements of S,, we conclude that

|W’| (‘an (fm(Q( Zmax)))'

Note that, if m < n, then L = {p}, U, = S,, = W;. Thus ([82) holds as well with
V,, any subset of S,,, being just (I.IH) for this case.

We now make a careful choice of V; by exploiting the action of W, x W5 on U;.
Set o; = [[}"5" " Sepimanst—cprs, . oo Note that o; is an element of U;. Let O be
the orbit of (S, x 5,)o; under the right action of W5 in (S, x S,)\U;. First we
observe that, if x,y are distinct elements of O, then xW; NyW; = (). Indeed, if for
o € Wy we have (S, x Sg)o0 # (S, X Sy)0;, then (S, x Sy)onc # (S, x S,)o; for
any 1 € Wj. This can be checked as follows: assume o;00; € S, x S, hence there
is ig € {1,...,p} such that o;00;(ig) > p. If ig < p — e then, since o;(ig) = o,
we have o(ig) > p+ d — i, so o;noo;(ig) > p for any n € Wy. If p —i < iy < p then
0;00;(ig) = g SO We can assume ig = P — yqr + t With ¢ < i — ip,4,. In this case
0i(i9) = P+ Jmin +1t and we must have that o(p+ Jmin +t) > p+d—i for otherwise
we would have 0;00;(ip) < p. But in this case noo;(ig) > p+ d — i for n € W; and
we are done.

Next we show that the action of Wy x W on (S, x S,)\U; by right multiplication
is transitive. For this it is enough to show that for any w € S,, NU;, there is o € W}
and 7 € Wy, n € (S, x S,) such that o; = nwor. Since [{w(t) | p — imax < t <
P+ Jminy {1, ..., p} =14, we can find o € W such that wo(t) <pforp—i <t <p
and wo(t) > pfor p —imee <t < P —lppae +10r p <t < P+ Jnin. We can
find n € (S, x S;) so that nwo(t) =t for p —i < t < p+ Jin. Moreover we can
also assume that nwo(p — imer +1) = P+ Jmin +t for 1 <t < 40, — 0. Finally,
we can find 7 € Wy such that nwot(t) = nwo(t) for p — imer < t < P+ Jmin »

(8.2) Ref =



DENOMINATOR IDENTITIES FOR LIE SUPERALGEBRAS 65

NWOT(P + Jmin +1) = D — tmae + t for p+ join <t < p+d—i and nwot(t) =t
otherwise. This means that nwor = o0; as wished.

We set V', to be a set of coset representatives for Stab;\Ws where Stab; is the
stabilizer of the coset (S, x S,)o; under the right action of Wy on (S, x S,)\U..

From our discussion it follows that we can choose V; = (S, x S,)o:)" ;. Since
Vi . C Wy, we see that W/ is the subgroup of W stabilizing (S, x S,)o;, thus
o;W!o; is the subgroup of Wi stabilizing S, x S,. It follows that o;W/c; = Wi N
(Sp x Sy) = S; x Sg_;. In particular |W/| =il(d —i)!.

We can rewrite (8.2) as

. 1 .
(8.3) CR=D g o (QN),
iel )

Set Wi, = o,V 405 Since V!, C Wh, it is clear that W! _, C Wi. We can
therefore rewrite (B3) as

(8.4) "R=>" Fyowi  (sgn(0:)0:Q(Xi,..)).
i€l

Lemma 8.1. Given i € L, set r; = typqe — i Then

(8.5) sgn(7:)0(Q(Xi,.,,)) = eI Pi-D Q(x;)

Proof. By an explicit computation, we see that

p . .
o E:HWW_E: n;ﬂr+1@+ 2: q—p+;—j—1@

~veS(X;) r=p—i+1
k] q— p—i—z—j+1 m+n—2r+1
- Z 9 €+ Z 92 €r
r=p+1 r=p+j+1
Lg-ptj—itl "\ g—p+j—i—1
Or O
’ rzl 2 ’ T;l 2

Observe that se, .\ ,—e,., ., fixes p+ 3 cox,]7[, hence we have
ePTiqesxphl
Se - , A :
p—i+1 " €ptd—i+1 7 —€p—rt1+0 d—i —Op—
[[oy (1= emermrn®on) [Ty (1 — ecrronri)
6P+qus(xi)ﬂ7[[

(1 — e_€p+d—i+1+6i> H:';11<]‘ — e*ep—r+1+5r> Hf;;"[(l — €€p+T*5n—r+l) N

P+Za,es(xi_ 1)]]7[['*’]]55 [[—]]“/Zzli+1 [+eprd—it1—0:

I — e [T - espw—snﬂﬂ)

Since [5;[= [[5 ]] and [y~ z+1[[+6p+d i1 — 0 = [V z+1]] we obtain that
(8 6) ep‘f'zqes(xi)]h[[ €P+Zﬂ/es(xi_l)]]'y[[ [[B ﬂ bi- H
R DY LT R G rr Rt

YES(X5) vES(Xi-1)

Since

SEp—i-I»l_ep-Q»d—i-{»l([[/B’f]] - [h/(zi—z]]) = [[6@2:1 [h/d i+1

the lemma is proven by an obvious induction. U
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Combining ([84]) and (8H]), we get

(8.7) PR — Zz' Fvowe (en([[ﬁﬂlf[hé_iﬂ)g<xi)).

One last computation is needed:

Lemma 8.2.

1 , . 5 eptri((Bi1-[va_;])
- ri([8;1-Tva—:D) 3 — .
- - w € Q(Xz) - -FWCWZ
il(d —)! M*d( ) m M gy (1 — € 1)/
Proof. Set Y;! the subdiagram of X; whose support is [, ;.1,0;] and Y;* the subdia-
gram having support [0, —dti+1, €pra—i). Let Gy = Wi, .., 57 and Gy = W
An easy calculation shows that

(8.8)

O d+i+175p+d—i} :

p+d—i 7 n
Bl-Ted= > =D 0= > b
h=p—i+1 h=1 h=n—d+i+1

In particular [S{] — [v5_;] is G1 x Ga-invariant. Since Gy x Gy C W, and commutes
with W! _,, we can write

ﬁWCWi y (Q(Xi)em([[ﬁﬂ]—[héfiﬂ))
_ ]:WC/(GH - (eﬂfpyilfﬂyf e”([wﬂ]_[hé*iﬂ)fcv‘l (Q( ))‘FGQ (Q(YQ)))

Combining ([3.9) with (IEE), we have that, for any g, Fw, (Q(X)) = Fw, (P(X)),
thus

Fworr(Q(X;)er1P1-lai)
= ﬁWC/(Gl xG2)Wi (ep—pyil —Py?2 em([[ﬁﬂ]*[hé_i}])ﬁcl (77( ))]__G2 (P(YQ)))
= Fwowi_, (P(X;)er Wl

The lemma follows from the observation that P(X;) = i!(d—1)! H—yeS(X;(l_e_[h]]). O

Using (B.8), we see that (871) becomes
P .
P ri([B:1-Tva—:D)
(8.9) eR=" Fy TR ).,
icL

YES(X5)

Using ([89), and expanding in geometric series in the domain h* = {h € b |
a(h) > 0,a € AT}, formula (83) becomes

(8.10) 'R = Z FWCWZn—d( Z 6V(a_rii,b+md_i))v
el acP;, beP,_;

where
i

V(a,b) =p — Z Qi +1€p—itt T+ Z be€pit + Z aiby — Z ba—i—t+10n—dtitt

t=1
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and we denote by r* the partition (r,7,...,r) € P;. Note that (8I0) can be written
as

(8.11) e"R=> Fwow: [ > eV @rib)),

€L acP;, ri9~iCbePy_;
From the formula above we can already derive an explicit form of the Theta

correspondence, but, in order to have the same parametrization of [I5], some extra
work is needed. For a € P; and & < i define

fk(a) = (al, ey ak),
lk(a) = (CLZ',qul, e ,CLZ').

If a C 7%, we set r'\a = (r —a;,...,r —ay). If a € P; then, given b € Py_; with
a‘li_i C b, we let bUa = (bl,...,bd,i,al,...,ai).

Givenr € Nand a € P, let k € {0,...,i} be such that 7* C a. If (r—a;)?* C b,
then we set

sr(a,b) = (fi(a) =", bU (" *\li_i(a))).

We let W _,(a,b) be the set of v € W' _, such that v(V(a,b)) is regular for
A(A,_1 x Ay;—1). Given r € N and a € P;, let k,(a) be maximal in the set of
k€ {0,...,i} such that r* C a.

Lemma 8.3. Assume that m < n and firi € L. Let (a,b) € P; x Py_; be such that
(ri — ;)" C b and set k = k,.(a).
(1) If k € L, then v(V(a—r;,b)) is A.-singular for any v € W' _,
(2) If k € L then there is a bijection v — z between W' .(a — r;',b) and
WF_ (sk(a, b)) such that

FWC (Sgn<,v)evV(afr¢i,b)) — -FWC (Sgn<z)€z\/(sk(a,b))) )

Proof. We will prove both statements by induction on ¢ — k. The case 1 = k is
obvious.
Ifk<i,setto=p—i+1—(r; —a;). Note that p — i + 1 < o < p —i.
If p-+d—1i=m then, since k < i, k ¢ L. Moreover we have that we can choose
4 =1{1}. An easy calculation shows that

—n+1 " on+m+1 . g—p+n+1
P = Z t)Et -+ Z (f - t)Et + Z(% - t)dt,

t=p+1 t=1
o (V(a,b), €, — €p—ir1) = 0. It follows that v(V(a —r;", b)) is A -singular for any
veEW: .

Ilfp+d—i < m,let s € S, be defined by setting s(typ) = p+d — i+ 1,
s(p+d—i+1) =p—i+1, s(p—i+1) =to, and s(t) =t for t # to,p—i+1,p+d—i+1.
Then s(V(a,b)) = V(a’ — (r; + 1)"1,b') where a’ = [; 1(a) + 1”! and b’ =
b U (r; — a;)'. Suppose that v € W! _, and assume that v(V(a — 1, b)) is A,
regular. Then v(tg) > p+d—1i,s0vs Y (p—d+i+1)=sy>p+d—i. Hence
w' = e vsThe Wit and

Sep—drit1—esg
Fw. (Sgn(v)evv(afni’b)) = ch(Sgn(w/)ew’V(a’f(nH)"—l,b')).
This implies that there is a unique w € )/VZ 1d(a — (r; + 1)L, b’) such that
}—Wc(sg”(v)evv(aﬂi ’ ) = Fw. (sgn(w)e”’ @ /*(Tiﬂ)i‘l,b/))_
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Clearly the argument above can be reversed to prove that the map v — w is
a bijection. Since r; + 1 = r;_y, (1, —al ) C (r; — ;) C B, and
k., (") = k., (a), we see that we can apply the induction hypothesis. Thus, since
w(V(a' —(r;+1)71, b)) is Aregular, we have k € L. Moreover there is a bijection
w2 from W, 1@ — (r; + 1)1, b') to WE__(s(a’, b)) such that

Fu. (Sgn(w)ewv(a’—m_li’l,b')) = Fw. (Sgn(z)ezV(sk(a’,b’))) '

Since it is clear that si(a’,b") = si(a, b) we are done by composing the two bijec-
tions. u

Proposition 8.4.

'R = FWCW;"T;( Z eV b))+ Z Fwowi_,( Z V@b,

acP beP; €L, i<imas acP;, bcP*

imazx? Imin d—1i

Proof. The expression (8II) for e’ R can be written as

Fwowirer (D @) >0 Fuawe (0 D e’ "))

m—d
acP belP; 1€L,i<imax acP;, r;4=iCbePy_;

Imin

+ > Fwows,_( ) eVaiB),

1€l T‘ii¢a€Pi,T‘id_iCb€Pd,¢

imax>

Let I11 denote the third summand. By Lemma we have

111 = Fuvowt ¢V (seab))
2> Fwow (X )

i€l kel, k<i rifCacP;,ri*t1gza
bE]Pj T’id_ZCb

which is

Z Z .Fk e ( Z eV(sk (a,b))) )

keL,k<imax i€L,i>k rikcaeP; rif+1za
bePy_; 74" Cb

We observe that the map s; is a bijection between the set
U {(ab) € By x Buy | by (a) = k.~ C b)
1€L,i>k
and the set
{(a,b) € Py x P}, | (imas — k)" ¢ b},

hence we can rewrite 11 as

Y Fhow, 3 V@b,

keL,k<imaw aE]Pk
bePY_ ., (imaz—k)4 " FzZb

Upon substituting we get the desired statement. U
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Arguing as in the previous sections, it follows from Proposition that
chM™" (91) =
> T
acPi, g, bEP; 0 UEW:YT_“;

ch(Fyq(v(=p1 + p(a, ) + pnt) = pio)) F,(c(a,b))

[loea+ca, nata, xa, nd—€%)

D 2 sl

1€L,1<tmaz a€P;, bEIP’;f vewfn_d

ch(Fyq(v(—p1 + p(a,b) + pm=1) — pAn-1))

Ha€A+(Am—l)\A+(Ap_1XAq_1)<1 —e )

Notation is as follows: AT = A;I;’Q); ifaeP;, beP;; weset

i d—i
p(a,b) = — § Qj—t+1€p—itt T E br€prts
t=1 t=1

)

d—i
e(a,b) = Z a0y — Z ba—i—t4+10n—d+itt-
t=1

t=1
Here F,(c(a,b)) is the finite-dimensional irreducible u(n)-module with highest
weight £(a, b). Finally, if A € span(e;), set

chF, ,(\) = Z sgn(w)H

wES XSy

ew()\erp,q),pp,q

aeAt (A, x A, (1 —€e7@)

Note that
V(a,b) = p+¢c(a,b) + u(a,b).

By [1], the inverse image Gy of Gy = U(n) in K is isomorphic to the cover defined
by the character det?. In particular, Gy is connected, hence the set 3, occurring in
Theorem A.1] is a subset of the set of finite-dimensional irreducible representations
of its Lie algebra u(n).

Set by = b Nu(n), ba = b Nulp, q).
Corollary 8.5 (Theta correspondence). With notation as in Theorem[{.1], we have

Y= U Fn(_(pl)\fn +€(a7 b))
€L
acP;,beP,_;
Moreover
T(Fu(e(a,b))) = L*(—(p1)p. + u(a, b)).
Proof. Similar to the proof of Corollary [6.3] U

Let us finally display the character formula. We let Win,d be the set of v € Wi
such that v(—(p1)pp, +p(a, b)+pAm-1) is regular for A(A4, 1 x A, ). Forv € W as
let

€0 = Co(—(p1) jp, +ulab)+ptn-1):
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From Proposition we get that, ifa e P then

ch(L*(~(p1)y, + p(a, b)) =
> cosgn(v)ehV({u(=pi + pla,b) + p*m=1)} = pinr),

tmax

vewmfd
while, if i € L with i < i, and a € P;, b € P}, then
ch(L*(—(p1)y, + p(a, b)) =
S cusgn(v)chVA({u(—pr + pla,b) + pt)} — phet).

UEW:nfd

b ecP;

tmazx? Jmin

However we can check that if a € P}, b € P, with & < 4, then, v € an,d
implies that W,v = Ww with w € W™ where W™ = {o0 € Sn|ole.) =
€D —1+1 < a < p+d—Ek} It follows that the character formula can be
written in a more uniform and symmetric way as follows: fix a € Py, b € P; with
kE<p, h<gq,and h+k < d. Choose a set Wr(::g’d_k) of coset representatives for
WAW WS8R - Then

ch(L*(=(p1)py, + n(a, b)) =
Z cosgn(v)ehV({v(=(p1)y, + p(a, b) 4+ pAm=1)} — phn=1).

T5(d—h,d—k
UEWin,d )

Once the character formula is written in this form, we can apply to it the argument
given in Corollary (3] thus, with notation as in Section Bl we obtain

Corollary 8.6. If k <p, h<q k+h<d acP;, belP;, and \o = —(p1)}s, +
w(a,b) + pAm=1 then

ch(L*(No)) = > (=1)20™V2({w(Xo)} — p*m).

wGWAAl)

9. ON THE KAC-WAKIMOTO CONJECTURE

As a final application of our denominator formulas we verify Kac-Wakimoto con-
jecture in a remarkable special case. Let us recall briefly this conjecture. Let V'
be a finite dimensional irreducible highest weight module with highest weight A.
Recall that the atypicality of A, denoted by atp(A) is the maximal number of lin-
early independent mutually orthogonal isotropic roots which are orthogonal to A.
The atypicality atp(V') is defined as the atypicality of A + p. The p-shift makes
this definition independent of the chosen set of positive roots. Also recall that the
supercharacter of V' is defined as schV =3, . sdim(Vy)e*. In [I4] the following
conjecture is stated.

Conjecture. There exists b € Q such that
ePth )
atp(V _g\/’
[ (1= et
where A is the highest weight of V' and the set of simple roots contains mutually
orthogonal isotropic roots 1, ..., Baupv) satisfying (p + A, B;) = 0.

(9.1) RefschV = b]:"W(
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We will refer to the latter condition as the KW condition. We prove this con-
jecture when V' is the natural representation of Lie superalgebras of type gl(m,n),
D(m,n), D(n,m) with m > n and B(m,n), B(n,m) with m > n. Recall that,
in these cases, we have atp(V') = min(m — 1,n). Also note that atp(V) = m for
B(m,m), and in this case KW condition does not hold for any choice of the set of
simple roots, hence we exclude B(m,m) from our consideration.

We fix the standard triangular decomposition of gy and consider the sets of sim-
ple roots compatible with this triangular decomposition. We embed our root sys-
tem into the lattice spanned by {¢}", U {0}, (with m > n); for example, for
D(n,m), m > n, 2¢ is an even root. We choose the inner product (e;,¢;) = 0;; =
—(04,9;).

9.1. Formula for a special root system. Consider a set of simple roots II which
contains the set
{61 — €2, €m—1 " Em,Em _51751 - 527---75n71 _5n}
Then the corresponding total order on {¢;}*, U {0} is given by ¢; > € > ... >
€m >01...>0, Fori=1,... ,nset
Yi = €my1—i — Oj.

Consider the natural representation V' = V' (¢;).

Set
e { {Vitizc1,nm1 Em=n,
’ {’Yi}i:l,...,n if m > n.

Note that I' is a maximal set of isotropic pairwise orthogonal roots which are
orthogonal to p+ €;. We have excluded B(m,m) since in this case the maximal set
is {7} ' U{er + 6} and € + 6, is “bad” in the sense that this root does not lie
in a set of simple roots obtained from II by a series of odd reflections. Recall that
[l = >Ziey i

We are going to show that there is a constant jy such that
ep+e1

M=)
Write R = Ro/Ry, Ri = [[ ea+(1—e7).

(9.2) RePschV = jyFw (

9.1.1. As go-module, V' is the sum of two simple modules with highest weights d;
and €, respectively. By the Weyl character formula one has

(9.3) RoeschV = Fyy(ePoter — gpotony,

9.1.2. Let g be the simple subalgebra of g whose set of roots A’ is the set of roots
in A that are orthogonal to ¢;. We have that g’ is of type gl(m — 1,n), B(m —
1,n),D(m — 1,n), B(n,m — 1), D(n,m — 1) respectively for g of type gl(m,n),
B(m,n), D(m,n), B(n,m), D(n,m). Observe that, if ¥ is a set of simple roots for
g such that (e, ) > 0 for any o € ¥, then a set of simple roots for g’ is given by
¥ =¥\{a € X | (a,€) > 0}. In particular the set II' := I\ {¢; — €2} is a set of
simple roots for g’. We introduce p/, p, Ry, R}, R', W’ for this root system in the
standard way. Recall the denominator identity for g’ in the form

/

ef

Hver(l - e—[[ﬂ]))’

R =
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with ¢ = %, which can be rewritten as
g/
/ ep/ORI
R66p0 = C.FW/ L ,
(Hver(l - 6*M))
or
e’ R)

’ p6 = ’ .
FW (6 ) CFW (H’YEF(]- - 6_[['7}]))
9.1.3. We now prove
€p0+61R1 )
[[er(l—e b7
where jir = 1 except for the case D(m,m) with §; € A and in the latter case

jv = 5-. Note that, by ([@3), formula (@2) is equivalent to formula (2.4).
Set

(94) f’W(ep(H-q _ 6P0+51) — ]VFW(

epo-l-ElRl
M=)
Ry

. PN . .
Since 7+ and e~ are W'-invariant, one has
1

A= Fw(

R} ero ))
o= D)
/ 1 /
_ FW/W/( / e€1tPo—rp Efw,(eﬂo))

— lfW (6P0+e1 H (1 _ 6—5))

BeA\A

R /
A= FW/W’ (R/l eeHrPO*Po . FW/(
1

SO

oL S COPE, st = gt - 34

Joah\a peJ

Now formula (@) is equivalent to the formula
(9.5) A = aFw(eM — eMa-nl),

where a = 1 except for the case D(m,m) with ¢; € A and a = 2 in the latter case.

Recall that Fyy(e*) = 0 if A is not regular. Let us find J such that \; is regular.
Write Ag = A [ As with A¢ in the span of {¢}7, and py = p. + ps, where p,
(resp., ps) is the standard “p” for A, (resp., for As). For any 8 € AT \ A’ one
has (B,€1) =1, (B,¢) = 0 for i > 1. Thus A\; = p. + (1 — |J|)e1 + vy, where v,
lies in the span of {d;}}_;. The regularity of \; is equivalent to the regularity of
pe + (1 —1]J|)e; and of vy.

For gl,, the element p. + (1 — |J])€; is regular if and only if |J| = 0,1 or [J| > m,
which is impossible since |[A] \ A’'| = n < m. For |J| = 1 one has v; = ps + J;,
which is regular only for i = 1. This gives (@.5).

For B(m,n), m > n the root system A, (resp., As) is of type B,, (resp., C,,).
The element p. + (1 — |.J|)e; is regular if and only if |J| = 0,1 or |J| > 2m, which
is impossible since |Af \ A’| = 2n < 2m. For |.J| = 1 one has v; = ps & §;, which
is regular only for v; = ps + d1; this gives (@.5).
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For B(n,m),m > n the root system A, (resp., As) is of type C,, (resp., B,).
The element p. + (1 — |J|)e; is regular if and only if |J| = 0,1 or |J| > 2m + 1,
which is impossible because |A] \ A'| = 2n + 1 < 2m + 1. Consider the case
|J| = 1. Then v; = ps it J = {e1} or v; = ps £ 0; for J = {e; F 0;}. Therefore
Ay is regular for J = {1}, {e1 — 61}, {e1 + 0,}. One has A,y = 55, (Afe,46,}) SO
Fw(eMear 4 eMa+ond) = 0. This establishes (03).

For D(n,m) the root system A. (resp., As) is of type C,, (resp., D,). The
element p. + (1 — |J|)e; is regular if and only if |J| = 0,1 or |J| > 2m + 1, which is
impossible since |[AT \ A’| = 2n < 2m + 1. For |J| = 1 one has v; = p; + §; and
this element is regular only if v; = ps + d1; this gives (@.3]).

For D(m,n),m > n the root system A, (resp., Ay) is of type D, (resp., C,).
The element p. + (1 — |J|)e; is regular if and only if |J| = 0,1 or |J| > 2m — 1,
which is impossible since |[AT \ A’| = 2n < 2m—1. For |J| = 1 one has v; = ps; +4;,
which is regular only for v; = ps + 01; this gives ([@.0).

Consider the case D(m,m) with A, (resp., As) of type D,, (resp., C,). The
element p. + (1 — |J|)e; is regular if and only if |J| = 0,1 or |J| > 2m — 1. As
above, for |J| = 1 the element vy is regular only if J = {e; — 61}, vy = ps + 01. If
|J| = 2m, then J = AT\ A" = {e; £}, s0 \j = po+ (1 —2m)e; = 5,5, (po+€1)-
If |J| = 2m — 1, then J = (A] \ A") \ {8}, where 8 = ¢ & 6; and so v; = p; F 6;
which is regular only if v; = ps+3d; and A\j = po+ (2 —2m)e; + 01 = S¢S, (Po+ 7).
Since s, s.,, € W we obtain

A = 2Fy (efoter — grotony,

This establishes (@.5) for this case. Having established (@.0]) in all cases, we have
proven (0.2)).

9.1.4. Let us deduce from ([@.2)) Kac-Wakimoto formula (@) for the natural rep-
resentation. If II is a set of simple roots for g and V/(A) is an irreducible finite di-
mensional g-module of highest weight A, recall that we say that the pair (II, V(A))
satisfies the KW condition if there are {8, ..., Bapo} € II with (Bi, ;) = 0 for
all 4,5 and (A + pg, B;) = 0 for all 7.

Assume that (fI, V') satisfies the KW condition, where, as above, V' is the natural
representation of g. Since KW condition is obviously invariant under the action of
the Weyl group we can consider the total order on {¢;}7, U {d;}!_, corresponding
to II. We can also assume that €; > e > ... > €y and 0; > 0y > ... > 0, with
€m,0n > 0 for g # gl(m,n) (this means that II induces the standard triangular
decomposition on gg).

Let A be the highest weight of the standard representation. Clearly, A is the
maximal element in {¢; }7*, U{d;}1; so A € {e1,9,}. For gl(m, m), D(m, m) we may
(and will) assume that €; > 0, (since we can switch {¢;} and {0;} in subsection [@.1]).
Let us show that A = ¢; for m > n. Indeed, for m > n one has atp(V') = n and so
(Bi,01) # 0 for some i. If A = 6y, then (A + p, ;) = (61, ;) # 0 which contradicts
to the definition of ;. Hence A = ¢; > 9;.

Let o € II be a root satisfying (a, €;) = 1. Notice that (p, a) > 0so0 (p+e, @) # 0

and thus o ¢ {Bi}ffl(v). The set II' = IT\ {a} is a set of simple roots for g’. Since

defg’ = atp(V), the set {e;d;| f; = e; — d;} is an arc diagram X for II'. Similarly,
let X be the arc diagram for II" having the elements of I" as arcs. Denominator
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identity for g’ gives, letting p = pg and p' = pg.,

. epl . eﬁl
9.6 atp V l. FW/ = -FW/
oo W Rl e e
Let us show that p — p/ = p — p'. Indeed, observe that p — p’, p — g’ are orthogonal

to A’. Since ¢, is maximal the inequality (c, e;) > 0 for a € A forces o € ATNAT.
Therefore

2<p - p/7 61) = Z (OZ, 61) - Z (Oé, 61) = Z (Oé, 61) - Z (OZ, 61)
acAT\A! aEAT\A acAf\A/ acAT\A
= 2<ﬁ - ﬁ/7 61)'

Set £ = (p—p') — (p—p'). We conclude that ¢ is orthogonal to A’ and ¢;. For
g # gl(m,n) this means that p— p' = p— .

For gl(m,n) we obtain that £ is proportional to Y ", ¢ — Z?Zl ;. The roots
+(€1 — €) are the only roots in A\ A" which are not orthogonal to €. Since
Al = A{, one has

2(p—pl.e2) = (e1 —€2,62) = 2(p — p', €2).
Hence (&, e3) = 0 so € = 0 as required.
Substituting ([@.6]) in ([@2)), we obtain,

6p+61 e

RePschV = jVﬁW(HyeF(l — e_w])) = jvFwwr (ep—p/+51]-"wf(1_[ver(1 — 6_[[7]])))

/

— jV fw/W/ (ep_p/_;’_ElFW,( eﬁ/ _
atp(V')! [ (1 — ey
Jv efte

Vi T )

This proves (@) with b = % Using (LI3), one can check that b has an
expression depending only on atp(V').
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