1,777 research outputs found

    Shock-treated Lunar Soil Simulant: Preliminary Assessment as a Construction Material

    Get PDF
    In an effort to examine the feasibility of applying dynamic compaction techniques to fabricate construction materials from lunar regolith, preliminary explosive shock-loading experiments on lunar soil simulants were carried out. Analysis of our shock-treated samples suggests that binding additives, such as metallic aluminum powder, may provide the necessary characteristics to fabricate a strong and durable building material (lunar adobe) that takes advantage of a cheap base material available in abundance: lunar regolith

    Determination of the local structure of Sr2x_{2-x}Mx_xIrO4_4 (M = K, La) as a function of doping and temperature

    Full text link
    The local structure of correlated spin-orbit insulator Sr2x_{2-x}Mx_xIrO4_4 (M = K, La) has been investigated by Ir L3_3-edge extended x-ray absorption fine structure measurements. The measurements were performed as a function of temperature for different dopings induced by substitution of Sr with La or K. It is found that Ir-O bonds have strong covalency and they hardly show any change across the N\'eel temperature. In the studied doping range, neither Ir-O bonds nor their dynamics, measured by their mean square relative displacements, show any appreciable change upon carrier doping, indicating possibility of a nanoscale phase separation in the doped system. On the other hand, there is a large increase of the static disorder in Ir-Sr correlation, larger for K doping than La doping. Similarities and differences with respect to the local lattice displacements in cuprates are briefly discussed.Comment: Main text: 6 pages, 4 figures, Supplemental information: 2 pages, 2 figure

    Evolutionarily Conserved Interaction between the Phosphoproteins and X Proteins of Bornaviruses from Different Vertebrate Species.

    Get PDF
    Bornavirus, a non-segmented, negative-strand RNA viruses, is currently classified into several genetically distinct genotypes, such as Borna disease virus (BDV) and avian bornaviruses (ABVs). Recent studies revealed that bornavirus genotypes show unique sequence variability in the putative 5' untranslated region (5' UTR) of X/P mRNA, a bicistronic mRNA for the X protein and phosphoprotein (P). In this study, to understand the evolutionary relationship among the bornavirus genotypes, we investigated the functional interaction between the X and P proteins of four bornavirus genotypes, BDV, ABV genotype 4 and 5 and reptile bornavirus (RBV), the putative 5' UTRs of which exhibit variation in the length. Immunofluorescence and immunoprecipitation analyses using mammalian and avian cell lines revealed that the X proteins of bornaviruses conserve the ability to facilitate the export of P from the nucleus to the cytoplasm via interaction with P. Furthermore, we showed that inter-genotypic interactions may occur between X and P among the genotypes, except for X of RBV. In addition, a BDV minireplicon assay demonstrated that the X and P proteins of ABVs, but not RBV, can affect the polymerase activity of BDV. This study demonstrates that bornaviruses may have conserved the fundamental function of a regulatory protein during their evolution, whereas RBV has evolved distinctly from the other bornavirus genotypes

    Hiding solutions in random satisfiability problems: A statistical mechanics approach

    Full text link
    A major problem in evaluating stochastic local search algorithms for NP-complete problems is the need for a systematic generation of hard test instances having previously known properties of the optimal solutions. On the basis of statistical mechanics results, we propose random generators of hard and satisfiable instances for the 3-satisfiability problem (3SAT). The design of the hardest problem instances is based on the existence of a first order ferromagnetic phase transition and the glassy nature of excited states. The analytical predictions are corroborated by numerical results obtained from complete as well as stochastic local algorithms.Comment: 5 pages, 4 figures, revised version to app. in PR

    AtHKT1;1 Mediates Nernstian Sodium Channel Transport Properties in Arabidopsis Root Stelar Cells

    Get PDF
    The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na+) transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na+ and K+ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K+ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na+ over K+ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na+ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na+ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na+ channel transport properties

    Numerical solution of a pursuit-evasion differential game involving two spacecraft in low earth orbit

    Get PDF
    This paper considers a spacecraft pursuit-evasion problem taking place in low earth orbit. The problem is formulated as a zero-sum differential game in which there are two players, a pursuing spacecraft that attempts to minimize a payoff, and an evading spacecraft that attempts to maximize the same payoff. We introduce two associated optimal control problems and show that a saddle point for the differential game exists if and only if the two optimal control problems have the same optimal value. Then, on the basis of this result, we propose two computational methods for determining a saddle point solution: a semi-direct control parameterization method (SDCP method), which is based on a piecewise-constant control approximation scheme, and a hybrid method, which combines the new SDCP method with the multiple shooting method. Simulation results show that the proposed SDCP and hybrid methodsare superior to the semi-direct collocation nonlinear programming method (SDCNLP method), which is widely used to solve pursuit-evasion problems in the aerospace field

    Structure-based prediction of insertion-site preferences of transposons into chromosomes

    Get PDF
    Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood. We analyzed the insertion sites of several transposons and retroviruses to detect patterns of integration that might be useful for prediction of preferred integration sites. Initially we found that a mathematical description of DNA-deformability, called V(step), could be used to distinguish preferential integration sites for Sleeping Beauty (SB) transposons into a particular 100 bp region of a plasmid [G. Liu, A. M. Geurts, K. Yae, A. R. Srinivassan, S. C. Fahrenkrug, D. A. Largaespada,J. Takeda, K. Horie, W. K. Olson and P. B. Hackett (2005) J. Mol. Biol., 346, 161–173 ]. Based on these findings, we extended our examination of integration of SB transposons into whole plasmids and chromosomal DNA. To accommodate sequences up to 3 Mb for these analyses, we developed an automated method, ProTIS(©), that can generate profiles of predicted integration events. However, a similar approach did not reveal any structural pattern of DNA that could be used to predict favored integration sites for other transposons as well as retroviruses and lentiviruses due to a limitation of available data sets. Nonetheless, ProTIS(©) has the utility for predicting likely SB transposon integration sites in investigator-selected regions of genomes and our general strategy may be useful for other mobile elements once a sufficiently high density of sites in a single region are obtained. ProTIS analysis can be useful for functional genomic, gene transfer and human gene therapy applications using the SB system

    Zoledronic acid in metastatic chondrosarcoma and advanced sacrum chordoma: two case reports

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Chondrosarcomas and chordomas are usually chemoresistant bone tumors and may have a poor prognosis when advanced. They are usually associated with worsening pain difficult to control.</p> <p>Patients and Methods</p> <p>Zoledronic acid was used in a 63-year-old man with metastatic chondrosarcoma and in a 66-year-old woman with a diagnosis of sacrum chordoma both reporting severe pain related to tumor.</p> <p>Results</p> <p>In the first case, zoledronic acid was able to maintain pain control despite disease progression following chemotherapy, in the other case, zoledronic acid only produced significant clinical benefit.</p> <p>Conclusion</p> <p>Control of pain associated with bone tumors such as chondrosarcoma and chondroma may significantly improve from use of zoledronic acid, independently from tumor response to other treatments. Evaluation on larger series are needed to confirm the clinical effect of this bisphosphonate on such tumors.</p

    Cytotoxicity and ion release of alloy nanoparticles

    Get PDF
    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 μM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media
    corecore