2,691 research outputs found
Absence of superconductivity in iron polyhydrides at high pressures
Recently, C. M. Pépin et al. [Science 357, 382 (2017)] reported the formation of several new iron polyhydrides FeHx at pressures in the megabar range and spotted FeH5, which forms above 130 GPa, as a potential high-Tc superconductor because of an alleged layer of dense metallic hydrogen. Shortly after, two studies by A. Majumdar et al. [Phys. Rev. B 96, 201107 (2017)] and A. G. Kvashnin et al. [J. Phys. Chem. C 122, 4731 (2018)] based on ab initio Migdal-Eliashberg theory seemed to independently confirm such a conjecture. We conversely find, on the same theoretical-numerical basis, that neither FeH5 nor its precursor, FeH3, shows any conventional superconductivity and explain why this is the case. We also show that superconductivity may be attained by transition-metal polyhydrides in the FeH3 structure type by adding more electrons to partially fill one of the Fe-H hybrid bands (as, e.g., in NiH3). Critical temperatures, however, will remain low because the
d-metal bonding, and not the metallic hydrogen, dominates the behavior of electrons and phonons involved in the superconducting pairing in these compounds
Модификация состава лесообразующих пород ЗАО Bakonyerdő в лесничестве Papa
Были исследованы медленно растущие леса из робинии псевдоакации на площади 250 га в лесничестве Pápa ЗАО Bakonyerdő на трех пробных площадях (Egyházaskesző, Kemeneshőgyész, Magyargencs). Леса на выбранных ПП достигнут возраста рубки в течение следующего 10-летнего периода лесной таксации. Задачей работы было выяснение взаимосвязи между параметрами древостоя и индексами выхода древесины
Challenges in using mid-infrared spectroscopy for the determination of soil physical, chemical, and biochemical properties on undisturbed soil samples
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the mid-infrared range (MIR) has become an established analytical tool for quantitative and qualitative analysis of soil samples. The heterogeneity of soil requires sample preparation procedures to optimize the reproducibility and accuracy of the spectroscopic measurement. These procedures have not been standardized. Generally, soil is dried and ground before measurement to avoid reflections of surface water films and minimize the intra- and inter-particle variability, respectively. Additionally, the sample surface is levelled to a plain surface for an ideal reflection. These sample preparation techniques are limited to disturbed samples only. Thus, a potential DRIFT mapping of undisturbed soil samples requires an adjusted calibration to allow for an accurate prediction of soil properties.
In this study, we developed a method for calibrating the prediction of DRIFT spectra collected from undisturbed soil samples. In a first step, differences of spectral information measured from undisturbed and ground soil samples have been evaluated. Therefore, we record the DRIFT spectra of 120 German and 120 West-African chemically well characterized soils. DRIFT spectra of both, ground and sieved only soil samples are recorded and both calibrated against different physio-chemical soil properties, such as texture, CEC, organic carbon, pH, or iron oxides. In preliminary experiments, we found that spectra of sieved and ground samples significantly differed in specific spectral regions representing clay minerals, as well as organic matter. It can be assumed that the prediction of surface related soil parameters could be superior using sieved soil spectra, as grounding alters the surface structure of the soil.
In a further step, microtopgraphy effects on spectra quality from disturbed and undisturbed soil samples have been evaluated. Therefore, spectral information has been taken from two dimensional disturbed and undisturbed soil samples at a high spatial resolution. The spectra quality was significantly higher in the disturbed soils since microtopography was absent in these samples. Thus, a digital elevation model (DEM) will be constructed using close-range digital photogrammetry to correct these topography effects.
With this new method, there is a potential of imaging soil parameters on a microscale that can help considerably in locating and understanding soil processes on a small scale
Classification of West African (peri)-urban and rural agricultural soils based on mid-infrared diffuse reflectance spectroscopy (DRIFT) and multivariate statistics and data mining
Urban and peri-urban agriculture has long been part of West African society. In Sub-Sahara Africa with its low soil fertility and high vulnerability for droughts, food security not only depends on rural food production but also on this (peri)-urban agriculture. The interdisciplinary GlobE – UrbanFoodPlus project aims to enhance the resource use efficiency of such agricultural sites in West African cities to improve the economic situation and food security for the people in this area.
To assess soil productivity inside this project, several randomized surveys were conducted to characterize urban and peri-urban agriculture in Tamale (Ghana), Ouagadougou (Burkina Faso), and in rural Northern Ghana. All sample sites were situated in the West African Savannah zone. These surveys systematically described the status of urban agriculture by collecting soil samples, as well as additional socioeconomic and land use data. For our study, the spectra of more than 1000 soil samples were analyzed using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in the mid-infrared range (MIR 4000–400 cm–1) at a resolution of 4 cm-1. Based on the large data set of spectra, we exploratory analyzed the data for clustering and grouping based on latest improvements in multivariate statistics and data mining.
Statistically, we were able to find classes inside the spectral data. This grouping could be explained by sample location using the Random Forest algorithm at a very low error of about 5%. By mathematical pretreatment of the data, the error could further be reduced to <2%. Due to the spectral difference by geography location, potential caused by differences in climate, we continued to determine groups within one location using cluster algorithms. With this technique, we could determine further subgroups in the data. We then used topographic, land use, and socioeconomic data to explain the statistically found clustering in the MIR spectra.
We herewith present a novel approach by combing multivariate MIR spectra analysis with socioeconomic data. Although we showed that soil spectra seemed to be largely affected by topography and climate, there were also differences in the spectra that could be explained by differences in land use practices
Creating Sustainable Education Projects in Roatan, Honduras Through Continuous Process Improvement
The investigators worked together with permanent residents of Roatán, Honduras on sustainable initiatives to help improve the island’s troubled educational programs. Our initiatives focused on increasing the number of students eligible and likely to attend a university. Using a methodology based in continuous process improvement, we developed tutoring programs, college preparation workshops, long-term plans for a local school, and solicited involvement by an island educational coalition. Lessons learned from these initiatives may be used to expand other efforts on the island and can be generalized to other programs in Central America
Creating Sustainable Education Projects In Roat, Honduras Through Continuous Process Improvement
The investigators worked together with permanent residents of Roatán, Honduras on sustainable initiatives to help improve the island’s troubled educational programs. Our initiatives focused on increasing the number of students eligible and likely to attend a university. Using a methodology based in continuous process improvement, we developed tutoring programs, college preparation workshops, long-term plans for a local school, and solicited involvement by an island educational coalition. Lessons learned from these initiatives may be used to expand other efforts on the island and can be generalized to other programs in Central America
Visible-light induced emulsion photopolymerization with carbon nitride as stabilizer and photoinitiator
Photopolymerization is a common method in the synthesis of polymers with various applications. Herein, a simple and effective route for surfactant-free emulsion photopolymerization (EPP) under visible light irradiation is described. Therein, graphitic carbon nitride (g-CN) was utilized as an stabilizer and a photoinitiator at the same time. As such, g-CN provides the starting point for polymer chain growth and particle formation. Notably, the as-prepared polymer latexes are directly crosslinked by g-CN, and the existence of g-CN is confirmed inside of the particle, as well as outside, where it forms relatively stable latexes. Moreover, surface functionalized g-CN was utilized to tailor the g-CN/monomer interactions for improved particle formation. g-CN quantum dots with enhanced photoluminescence properties were introduced in EPP as well, providing polymer latexes with enhanced photoluminescence. The obtained polymer nanoparticles might be promising candidates for bioimaging applications
Visible-light induced emulsion photopolymerization with carbon nitride as stabilizer and photoinitiator
Photopolymerization is a common method in the synthesis of polymers with various applications. Herein, a simple and effective route for surfactant-free emulsion photopolymerization (EPP) under visible light irradiation is described. Therein, graphitic carbon nitride (g-CN) was utilized as an stabilizer and a photoinitiator at the same time. As such, g-CN provides the starting point for polymer chain growth and particle formation. Notably, the as-prepared polymer latexes are directly crosslinked by g-CN, and the existence of g-CN is confirmed inside of the particle, as well as outside, where it forms relatively stable latexes. Moreover, surface functionalized g-CN was utilized to tailor the g-CN/monomer interactions for improved particle formation. g-CN quantum dots with enhanced photoluminescence properties were introduced in EPP as well, providing polymer latexes with enhanced photoluminescence. The obtained polymer nanoparticles might be promising candidates for bioimaging applications
- …