595 research outputs found

    Effectiveness of flameless catalytic infrared radiation against life stages of three stored-product insect species in stored wheat

    Get PDF
    A bench top flameless catalytic infrared emitter was evaluated in the laboratory to disinfest wheat containing different life stages (ages) of the lesser grain borer, Rhyzopertha dominica; rice weevil, Sitophilus oryzae; and red flour beetle, Tribolium castaneum. The emitter produces infrared in the 3 to 7 um range. A noncontact infrared thermometer obtained real-time grain temperatures during exposures of uninfested and infested wheat containing various life stages of the three insect species. The grain temperatures attained were influenced by wheat quantity, distance from the emitter, and exposure time, which in turn influenced effectiveness against various life stages of the three species. In general, higher grain temperatures were attained in 113.5 g of wheat as opposed to 227.0 g, at 8.0 cm from the emitter surface rather than at 12.7 cm, and during a 60-sec exposure compared to a 45-sec exposure. Logistic regression indicated the probability of death of various life stages of R.  dominica, S. oryzae, and T. castaneum was temperature-dependent. About 99 to 100% mortality of all life stages of the three species occurred when the mean wheat temperatures were in the range of 108 to 114°C. The promising results show flameless catalytic infrared technology to be a viable option for disinfestation of stored wheat, provided such high temperatures do not affect grain quality.Keywords: Infrared radiation, Stored-product insects, Non-chemical method, Efficacy assessmen

    Synthesis, spectral characterization and bioactivity evaluation of sulfonamide derivatives of p-nitrobenzene sulfonylchloride

    Get PDF
    1375-1383A simple and convenient method for the synthesis of biologically active sulfonamide derivatives of p-nitrobenzene sulfonylchloride has been achieved. All the title compounds have been characterized by spectral and elemental analysis. They have been further screened in vitro for their antibacterial and antifungal activities. All the compounds show good to moderate activity against both bacteria and fungi when compared with standard bactericide, Streptomycin and fungicide, Nystatin

    Alteration of Proteins and Pigments Influence the Function of Photosystem I under Iron Deficiency from Chlamydomonas reinhardtii

    Get PDF
    BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency

    Protein Localization with Flexible DNA or RNA

    Get PDF
    Localization of activity is ubiquitous in life, and also within sub-cellular compartments. Localization provides potential advantages as different proteins involved in the same cellular process may supplement each other on a fast timescale. It might also prevent proteins from being active in other regions of the cell. However localization is at odds with the spreading of unbound molecules by diffusion. We model the cost and gain for specific enzyme activity using localization strategies based on binding to sites of intermediate specificity. While such bindings in themselves decrease the activity of the protein on its target site, they may increase protein activity if stochastic motion allows the acting protein to touch both the intermediate binding site and the specific site simultaneously. We discuss this strategy in view of recent suggestions on long non-coding RNA as a facilitator of localized activity of chromatin modifiers

    Molecular Cloning and Expression Analysis of fushi tarazu Factor 1 in the Brain of Air-Breathing Catfish, Clarias gariepinus

    Get PDF
    BACKGROUND: Fushi tarazu factor 1 (FTZ-F1) encodes an orphan nuclear receptor belonging to the nuclear receptor family 5A (NR5A) which includes adrenal 4-binding protein or steroidogenic factor-1 (Ad4BP/SF-1) and liver receptor homologue 1 (LRH-1) and plays a pivotal role in the regulation of aromatases. METHODOLOGY/PRINCIPAL FINDINGS: Present study was aimed to understand the importance of FTZ-F1 in relation to brain aromatase (cyp19a1b) during development, recrudescence and after human chorionic gonadotropin (hCG) induction. Initially, we cloned FTZ-F1 from the brain of air-breathing catfish, Clarias gariepinus through degenerate primer RT-PCR and RACE. Its sequence analysis revealed high homology with other NR5A1 group members Ad4BP/SF-1 and LRH-1, and also analogous to the spatial expression pattern of the latter. In order to draw functional correlation of cyp19a1b and FTZ-F1, we analyzed the expression pattern of the latter in brain during gonadal ontogeny, which revealed early expression during gonadal differentiation. The tissue distribution both at transcript and protein levels revealed its prominent expression in brain along with liver, kidney and testis. The expression pattern of brain FTZ-F1 during reproductive cycle and after hCG induction, in vivo was analogous to that of cyp19a1b shown in our earlier study indicating its involvement in recrudescence. CONCLUSIONS/SIGNIFICANCE: Based on our previous results on cyp19a1b and the present data, it is plausible to implicate potential roles for brain FTZ-F1 in ovarian differentiation and recrudescence process probably through regulation of cyp19a1b in teleosts. Nevertheless, these interactions would require primary coordinated response from ovarian aromatase and its related transcription factors

    Controllable Synthesis of Single-Crystalline CdO and Cd(OH)2Nanowires by a Simple Hydrothermal Approach

    Get PDF
    Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex

    Chitin Binding Proteins Act Synergistically with Chitinases in Serratia proteamaculans 568

    Get PDF
    Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues

    Isolation of a Glucosamine Binding Leguminous Lectin with Mitogenic Activity towards Splenocytes and Anti-Proliferative Activity towards Tumor Cells

    Get PDF
    A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response
    corecore