7,219 research outputs found

    Plasmon Evolution and Charge-Density Wave Suppression in Potassium Intercalated Tantalum Diselenide

    Full text link
    We have investigated the influence of potassium intercalation on the formation of the charge-density wave (CDW) instability in 2H-tantalum diselenide by means of Electron Energy-Loss Spectroscopy and density functional theory. Our observations are consistent with a filling of the conduction band as indicated by a substantial decrease of the plasma frequency in experiment and theory. In addition, elastic scattering clearly points to a destruction of the CDW upon intercalation as can be seen by a vanishing of the corresponding superstructures. This is accompanied by a new superstructure, which can be attributed to the intercalated potassium. Based on the behavior of the c-axis upon intercalation we argue in favor of interlayer-sites for the alkali-metal and that the lattice remains in the 2H-modification

    Semi-Automated SVG Programming via Direct Manipulation

    Full text link
    Direct manipulation interfaces provide intuitive and interactive features to a broad range of users, but they often exhibit two limitations: the built-in features cannot possibly cover all use cases, and the internal representation of the content is not readily exposed. We believe that if direct manipulation interfaces were to (a) use general-purpose programs as the representation format, and (b) expose those programs to the user, then experts could customize these systems in powerful new ways and non-experts could enjoy some of the benefits of programmable systems. In recent work, we presented a prototype SVG editor called Sketch-n-Sketch that offered a step towards this vision. In that system, the user wrote a program in a general-purpose lambda-calculus to generate a graphic design and could then directly manipulate the output to indirectly change design parameters (i.e. constant literals) in the program in real-time during the manipulation. Unfortunately, the burden of programming the desired relationships rested entirely on the user. In this paper, we design and implement new features for Sketch-n-Sketch that assist in the programming process itself. Like typical direct manipulation systems, our extended Sketch-n-Sketch now provides GUI-based tools for drawing shapes, relating shapes to each other, and grouping shapes together. Unlike typical systems, however, each tool carries out the user's intention by transforming their general-purpose program. This novel, semi-automated programming workflow allows the user to rapidly create high-level, reusable abstractions in the program while at the same time retaining direct manipulation capabilities. In future work, our approach may be extended with more graphic design features or realized for other application domains.Comment: In 29th ACM User Interface Software and Technology Symposium (UIST 2016

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Caby Photometry of the Hyades: Comparisons to the Field Stars

    Full text link
    Intermediate-band photometry of the Hyades cluster on the Caby system is presented for dwarf stars ranging from spectral type A through late K. A mean hk, b-y relation is constructed using only single stars without anomalous atmospheres and compared to the field stars of the solar neighborhood. For the F dwarfs, the Hyades relation defines an approximate LOWER bound in the two-color diagram, consistent with an [Fe/H] between +0.10 and +0.15. These index-color diagrams follow the common convention of presenting stars with highest abundance at the bottom of the plot although the index values for the metal-rich stars are numerically larger. For field F dwarfs in the range [Fe/H] between +0.4 and -1.0, [Fe/H] = -5.6 delta-hk + 0.125, with no evidence for a color dependence in the slope. For the G and K dwarfs, the Hyades mean relation crosses the field star distribution in the two-color diagram, defining an approximate UPPER bound for the local disk stars. Stars found above the Hyades stars fall in at least one of three categories: [Fe/H] below -0.7, [Fe/H] above that of the Hyades, or chromospherically active. It is concluded that, contrary to the predictions of model atmospheres, the hk index for cool dwarfs at a given color hits a maximum value for stars below solar composition and, with increasing [Fe/H] above some critical value, declines. This trend is consistent, however, with the predictions from synthetic indices based upon much narrower Ca filters where the crossover is caused by the metallicity sensitivity of b-y.Comment: 13 pages, 9 eps figures, 1 tex table, 1 ascii tabl

    Kernel Sequential Monte Carlo

    Get PDF
    We propose kernel sequential Monte Carlo (KSMC), a framework for sampling from static target densities. KSMC is a family of sequential Monte Carlo algorithms that are based on building emulator models of the current particle system in a reproducing kernel Hilbert space. We here focus on modelling nonlinear covariance structure and gradients of the target. The emulator's geometry is adaptively updated and subsequently used to inform local proposals. Unlike in adaptive Markov chain Monte Carlo, continuous adaptation does not compromise convergence of the sampler. KSMC combines the strengths of sequental Monte Carlo and kernel methods: superior performance for multimodal targets and the ability to estimate model evidence as compared to Markov chain Monte Carlo, and the emulator's ability to represent targets that exhibit high degrees of nonlinearity. As KSMC does not require access to target gradients, it is particularly applicable on targets whose gradients are unknown or prohibitively expensive. We describe necessary tuning details and demonstrate the benefits of the the proposed methodology on a series of challenging synthetic and real-world examples

    Characterisation of an n-type segmented BEGe detector

    Full text link
    A four-fold segmented n-type point-contact "Broad Energy" high-purity germanium detector, SegBEGe, has been characterised at the Max-Planck-Institut f\"ur Physik in Munich. The main characteristics of the detector are described and first measurements concerning the detector properties are presented. The possibility to use mirror pulses to determine source positions is discussed as well as charge losses observed close to the core contact

    Possible Stellar Metallicity Enhancements from the Accretion of Planets

    Get PDF
    A number of recently discovered extrasolar planet candidates have surprisingly small orbits, which may indicate that considerable orbital migration takes place in protoplanetary systems. A natural consequence of orbital migration is for a series of planets to be accreted, destroyed, and then thoroughly mixed into the convective envelope of the central star. We study the ramifications of planet accretion for the final main sequence metallicity of the star. If maximum disk lifetimes are on the order of 10 Myr, stars with masses near 1 solar mass are predicted to have virtually no metallicity enhancement. On the other hand, early F and late A type stars with masses of 1.5--2.0 solar masses can experience significant metallicity enhancements due to their considerably smaller convection zones during the first 10 Myr of pre-main-sequence evolution. We show that the metallicities of an aggregate of unevolved F stars are consistent with an average star accreting about 2 Jupiter-mass planets from a protoplanetary disk having a 10 Myr dispersal time.Comment: 14 pages, AAS LaTeX, 3 figures, accepted to ApJ Letter

    The large scale dynamics of the outer heliosphere and the long-term modulation of galactic cosmic rays

    Get PDF
    The network of cosmic ray observatories reaching across the heliosphere has given new insight into the process of solar modulation, establishing that the decreases occur principally in the outer heliosphere and are produced by interplanetary flow systems; that the hysteresis effects appear to be produced by changes in the rigidity dependence of the diffusion coefficient and that the predicted effects on the cosmic ray gradients associated with the reversal of the solar magnetic field polarity are not observed

    Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics

    Get PDF
    Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to add substantial solid and vaporized material to the atmosphere, but these conditions were not studied
    • …
    corecore