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Abstract. We propose kernel sequential Monte Carlo (KSMC), a frame-
work for sampling from static target densities. KSMC is a family of
sequential Monte Carlo algorithms that are based on building emulator
models of the current particle system in a reproducing kernel Hilbert
space. We here focus on modelling nonlinear covariance structure and
gradients of the target. The emulator’s geometry is adaptively updated
and subsequently used to inform local proposals. Unlike in adaptive
Markov chain Monte Carlo, continuous adaptation does not compromise
convergence of the sampler. KSMC combines the strengths of sequental
Monte Carlo and kernel methods: superior performance for multimodal
targets and the ability to estimate model evidence as compared to Markov
chain Monte Carlo, and the emulator’s ability to represent targets that
exhibit high degrees of nonlinearity. As KSMC does not require access to
target gradients, it is particularly applicable on targets whose gradients
are unknown or prohibitively expensive. We describe necessary tuning
details and demonstrate the benefits of the the proposed methodology on
a series of challenging synthetic and real-world examples.

1 Introduction

Monte Carlo methods for estimating integrals have become one of the main
inference tools of statistics and machine learning over the last thirty years.
They are used to numerically approximate intractable integrals with respect to
Bayesian posterior distributions. Importantly, they also provide means to quantify
uncertainty in the form of variance estimates, credible intervals and regions of
high posterior density. The most widely adopted Monte Carlo method is Markov
Chain Monte Carlo (MCMC), which constructs a Markov chain that admits
the desired target as its stationary distribution; MCMC generates approximate
samples from the target when the chain is run sufficiently long. Poorly tuned
MCMC samplers may need to run ‘burn in’ for a very long time before reaching
its equilibrium distribution, and successive samples may be highly correlated.

In contrast, sequential Monte Carlo (SMC) methods are based on iterative
importance sampling, and have traditionally been applied to inference in filtering
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problems with a sequence of time-varying target distributions [9], e.g. in state-
space models, where each intermediate distribution is typically defined on a
successively larger latent space. In this paper, we focus on static SMC methods,
which recently have generated increasing interest as an alternative to MCMC for
Bayesian inference on a single target distribution [3, 4, 6, 11]. Static SMC frames
inference over a fixed target distribution as a sequential problem by defining
an artificial series of incremental targets. This can be done by tempering the
target density [6], by including data points sequentially [4], or by targeting the
full density at every iteration. The latter is a special case known as population
Monte Carlo [PMC, 2].

Kernel methods have recently been employed to construct efficient adaptive
MCMC algorithms: via modelling a Markov chain trajectory in a reproducing
kernel Hilbert space (RKHS) and using geometry therein, it is possible to sig-
nificantly improve mixing on target distributions with nonlinear interactions
between components. Covariance in the RKHS can be used to construct an
adaptive random walk scheme, kernel adaptive Metropolis Hastings (KAMH),
with proposals that are locally aligned with the target density [20]. Gradients of
exponential families in the RKHS can be used to construct kernel Hamiltonian
Monte Carlo (KHMC), an algorithm that behaves similar to Hamiltonian Monte
Carlo (HMC) but without requiring access to gradient information [22]. Both
KAMH and KHMC fall back to a random walk in yet unexplored regions, inher-
iting convergence properties such as geometric ergodicity on log-concave targets
[c.f. Proposition 3 in 22].

In this paper, we develop a framework for kernel sequential Monte Carlo
(KSMC) for sampling from static models. Similarly to the previous work in
adaptive MCMC [20, 22], KSMC represents the (weighted) particle system of
SMC algorithms in a RKHS. The learned geometry of the corresponding ‘emulator’
model is used to construct proposal distributions for both MCMC rejuvenation
and importance sampling steps inside SMC.

We apply this framework to two existing SMC algorithms, combining the
strengths of SMC with those of kernel adaptive MCMC. Firstly, we introduce
kernel adaptive sequential Monte Carlo (KASMC), where the global covariance
estimate in the adaptive SMC sampler [ASMC, 11] is replaced by a kernel-informed
local covariance [20]. Similar to ASMC, KASMC’s proposals start as a standard
random walk and then smoothly transition to taking locally aligned steps. As a
result, sampling efficiency can be significantly improved over ASMC. Secondly,
we use an infinite dimensional exponential family model [21] to estimate target
gradients as in Strathmann et al. [22]. This results in kernel gradient importance
sampling (KGRIS), a gradient-free version of gradient importance sampling
(GRIS) [19]. KGRIS is a novel adaptation of kernel gradient estimation ideas for
constructing Langevin diffusions, and inherits their sampling efficiency compared
to random walks. Our contribution includes crucial implementation details, such
as Rao-Blackwelisation, stratification, and tuning of the presented algorithms.

Unlike for Langevin diffusions or Hamiltonian dynamics, our framework does
not require gradients or higher-order information of the target. Consequently, the



Algorithm 1 Sequential Monte Carlo for Static Models
Input: Sequence of target densities π0, . . . , πT (where πT = π), size of particle system
N
Output: sets X1, . . . ,XT and W1, . . . ,WT of samples and accompanying weights
Initialise X0 to N samples from π0, and W0 to equal weights 1/N
for t = 1 through t = T do

W̃t = {W i
t−1πt(Xi

t−1)/πt−1(Xi
t−1)}N

i=1

construct X̃t by re-sampling (Xt−1,W̃t), resulting in N copies of samples in Xt−1
construct or update proposal qt

if using an MH transition kernel then
Set Xt to
{Xi

t ∼ MH kernel with proposal qt(·|X̃i
t)}N

i=1
Wt = {1/N}N

i=1
else

Set Xt to N samples from
qMixt

t (·) = 1
N

∑N

i=1 qt(·|X̃i
t)

Wt = {πt(Xt,i)/qMixt
t (Xt,i)}N

i=1
end if

end for
return X1, . . . ,XT and W1, . . . ,WT

KSMC framework is particularly useful in combination with importance sampling
frameworks such as SMC2 [5] and IS2 [23] for sampling from doubly intractable
targets, where gradient information is unavailable.

We finally argue that (adaptive) SMC is a more natural framework for
employing RKHS-based representations. Adaptive MCMC samplers require a
vanishing adaptation schedule in order to ensure convergence to the correct target
[18], creating a difficult to tune exploration-exploitation trade-off with limited
principled guidance on selecting such adaptation schedules. In contrast, SMC
proposals can continuously be adapted and the choice of an adaptation schedule
is thus entirely circumvented. An easy to use Python package implementing the
proposed methods is available under an open source licence.1

2 Background

Sequential Monte Carlo algorithms [6, 8] approximate a target density π by
iteratively targeting a sequence of incremental densities π0, . . . , πT , with πT = π.
These incremental densities are typically defined such that the initial density
π0 is easy to sample from (e.g. the prior in a Bayesian model). Consecutive
distributions πt, πt+1 are ‘close’, in the sense that drawing samples from πt+1
given samples from πt is easier than drawing samples from πt+1 directly. At
each stage t, we approximate the target density πt with a set of N samples

1 Source code available at https://github.com/ingmarschuster/kameleon_rks

https://github.com/ingmarschuster/kameleon_rks


Xt = {Xi
t}Ni=1 with associated importance weights Wt = {W i

t }Ni=1, with

π̂t(X) =
N∑
i=1

W i
t δXi

t
(X) (1)

where δXi
t
is a Dirac point mass on Xi

t . In contrast to SMC as applied to state
space models, in a static SMC setting each target density πt is defined on the
same space X .

We initialise the algorithm by sampling an initial set of N samples X0 from
the initial density q0, with equal importance weights 1/N. For each subsequent
t = 1, . . . , T , given a particle set (Xt−1,Wt−1) approximating πt−1, we construct
a new particle set which approximates πt. This is a three-step process, summarised
in Algorithm 1. First, we re-weight each particle relative to the new target density,
setting

W̃ i
t = W i

t−1
πt(Xi

t−1)
πt−1(Xi

t−1)
.

Weighting the points in Xt−1 by {W̃ i
t }Ni=1 yields an approximation to πt in the

same manner as in (1) — the new importance weights correct for the change
from πt−1 to πt.

Static SMC then applies re-sampling, constructing an equally-weighted set of
particles X̃t = {X̃i

t}Ni=1 by sampling with replacement from Xt−1 with weights
proportional to W̃ i

t , [7]. Together, these samples form an approximation to πt,
where values from Xt−1 with high weight under πt have been duplicated and
those with low weight under πt−1 have been discarded. This duplication of values,
however, can lead to a sample impoverishment problem: many of the re-sampled
values X̃i

t may have identical values. This can be avoided by applying a so-called
rejuvenation step after re-sampling [4], constructing an overall approximation
(Xt,Wt) to πt with a diverse set of values of Xi

t .
The rejuvenation step consists of a proposal qt(Xt|X̃t). We here consider two

ways of incorporating such a proposal. One traditional option is to use a Markov
density qt as a proposal in a Metropolis-Hastings (MH) kernel which leaves πt
invariant: For each X̃i

t in X̃t, we propose a new value Xi
t from qt(Xi

t |X̃i
t) and

accept it according to a standard MH acceptance ratio targeting πt. In this case,
each importance weight in Wt will be identically 1/N.

An alternative is to consider the mixture proposal of all such Markov densities
qt as an importance sampling proposal over πt, a common approach in PMC. We
can define

qMixt
t (Xt) = 1

N

N∑
i=1

qt(Xt|X̃i
t),

and draw N samples Xt from qMixt
t to generate Xt. Now we set importance

weights in Wt to W i
t = πt(Xi

t)/qMixt
t (Xi

t) for i = 1, . . . , N .



2.1 Existing SMC algorithms

In SMC algorithms, we are free in choosing a proposal qt. In contrast to MCMC,
it may be directly informed by the previous samples Xt−1 and their weights
Wt−1. The following two existing SMC algorithms are examples that we will
extend to kernel-based alternatives.

Adaptive SMC The adaptive SMC sampler (ASMC) studied by Fearnhead and
Taylor [11] is based on continuously estimating the global covariance Σt of
πt, and updating a scaling parameter ν2. This is done from the re-weighted
particle system, which is subsequently moved through a Markov kernel. The
proposal distribution used within the MH kernel at point X in Algorithm 1 is
qt(·|X) = N (·|X, ν2Σt + γ2I).

Gradient importance sampling In addition to using the estimated covariance
Σt of π as in ASMC, gradient importance sampling [GRIS, 19] incorporates
a drift term based on the log target gradient. For target gradient ∇ log π and
previous sample X, the proposal distribution in Algorithm 1 is qt(·) = N (·|X +
D(∇ log π(X)), ν2Σt), for each individual particle X in the current (unweighted)
particle set. A typical choice for the drift function is D(y) = δy with 0 < δ < 1.
Rather than incorporating a MH step, the updated values are importance weighted
— GRIS is a population Monte Carlo (PMC) algorithm. In numerical experiments,
GRIS compares favourably to its closest MCMC relatives like the adaptive
MALTA algorithm and adaptive Metropolis [19].

2.2 Kernel adaptive MCMC proposals

The previously described SMC algorithms are based on target covariance and
gradients. We now review how these quantities were previously modelled using
kernel methods in the context of MCMC. Note that any form of adaptation in
MCMC requires care in order to preserve ergodicity of the resulting Markov chain,
and some form of vanishing adaptation is needed [1, 18]. This can be achieved
e.g. by updating the proposal family with vanishing probability [20, 22].

Covariance emulator Sejdinovic et al. [20] introduced a kernel covariance emulator
as a method for adapting the proposal distribution in a Metropolis-Hastings
MCMC algorithm, based on the history of the Markov chain X = {X1, X2, . . . }.
The idea is to represent covariance of the target as an empirical Gaussian measure
with mean µX := 1

|X|
∑
X∈X k(X, ·) and covariance 1

|X|
∑
X∈X k(X, ·)⊗k(X, ·)−

µX ⊗ µX in a RKHS with kernel k. This measure can be sampled from exactly,
and it is possible to (approximately) map samples back to the original space.

Sejdinovic et al. [20] showed that it is possible to integrate out the RKHS
proposal analytically, which elegantly results in a closed form Gaussian proposal
density in the input space. For a Gaussian kernel, the proposal at particle Xj

locally aligns to the structure of the posterior at Xj , and is given by

qKAMH(·|Xj) = N (·|Xj , γ
2I + ν2MX,Xj

CM>X,Xj
),



where C = I − 1
n11> is a centering matrix and MX,Xj

collects kernel gradients
with respect to all particles,

MX,Xj = 2[∇xk(x,X1)|x=Xj , ...,∇xk(x,XN )|x=Xj ].

Additional exploration noise with variance γ2 avoids that the proposal col-
lapses in unexplored regions of the input space.

Gradient emulator To overcome random walk behaviour of KAMH, Strathmann
et al. [22] constructed an algorithm that adaptively learns the gradient struc-
ture of the Markov chain history, and mimics Hamiltonian dynamics using the
learned gradients. This is done by fitting an un-normalised infinite dimensional
exponential family model with density function exp(〈f, k(x, ·)〉H −A(f)). Here,
〈f, k(x, ·)〉H = f(x) is the inner product between natural parameters f and suffi-
cient statistics k(x, ·) in a RKHS H, and A(f) is the (intractable) log-partition
function. Remarkably, it is possible to efficiently estimate f via minimising the
expected L2 error of ∇xf(x) without dealing with A(f). Combining this model
with a further approximation, based on random basis functions [KMC finite;
22], allows for efficient on-line updates of the emulator. Similar to Hamiltonian
Monte Carlo, the resulting KHMC algorithm offers substantial improvements
over random walks. Tt does so, however, without requiring gradient information
of the target. This allows application to intractable likelihood models, where we
cannot evaluate the target densities πt even up to a normalizing constant, and
gradients are similarly unavailable.

3 Kernel sequential Monte Carlo

We now develop a kernel sequential Monte Carlo framework. KSMC is based on
combining classical adaptive SMC with the emulator based proposals of kernel
adaptive MCMC. In general, once a kernel emulator is fitted to past particle
systems, we can use it in either of two ways: as proposals for MH rejuvenation
steps inside SMC or as importance densities in PMC.

Key contributions. Our main contribution is to combine several yet unconnected
pieces of literature into a novel framework that performs favourably compared to
its individual parts: adaptive SMC proposals, SMC for intractable likelihoods,
and kernel emulators for efficient proposals. This combination is simple yet very
natural: As compared to (kernel) adaptive MCMC, the KSMC framework (i)
circumvents the need for vanishing adaptation, (ii) can represent multimodality,
(iii) allows to estimate model evidence in a straight-forward manner. On the
other hand, as compared to plain adaptive SMC and PMC, the use of kernel
emulators (iv) leads to faster convergence for nonlinear targets.

We present two novel algorithms, KASMC and KGRIS, both of which are
weighted and kernelised generalisations of existing kernel MCMC and SMC
respectively. These modifications can lead to significant mixing improvements in
practice. Our contribution furthermore includes variance reduction techniques



that are critical in practice. In particular, naïve implementations can suffer from
high variance induced by simplifications. As this results in lower quality emulators,
too high variance would be self-reinforcing and is to be strictly avoided.

3.1 Kernel adaptive rejuvenation: KASMC

We can use both kernel emulators for the rejuvenation step of SMC. More specif-
ically, at time-step t+ 1, we target distribution πt+1, based on a particle system
approximating πt. After re-weighting, the new system {(Wt+1,i, Xt+1,i)}Ni=1 is
a weighted approximation to πt+1. We here focus on the nonlinear covariance
emulator which can be either fitted using the equally-weighted re-sampled values
X̃t, or the original particle set with weights W̃t. The proposal distribution for
Algorithm 1 at X then is exactly qKAMH. As in KAMH, this results in covariance
matrices for Gaussian proposals which locally align with the target [20], now
taking the SMC particle weights into account. The resulting kernel adaptive SMC
sampler (KASMC) inherits KAMH’s ability to explore non-linear targets more
efficiently than proposals based on estimating global covariance structure such
as in Fearnhead and Taylor [11] and Haario et al. [13]. Figure 1 (left) shows a
simple illustration of a global (ASMC) and local proposal distribution (KASMC).
Compared to previous work on kernel induced local covariance matrices for
MCMC [20], we implement a random features approximation in order to enable
computationally efficient updates with information gained from new samples [17].

3.2 Kernel induced importance densities: KGRIS

Another way to use kernel-based emulators is for generating proposals which
are corrected by importance sampling, i.e. in PMC. In our second approach, a
kernel emulator is fitted to weighted particles, which were previously corrected
via importance weights. As an example, we here use the kernel gradient emulator
by Strathmann et al. [22], in its finite dimensional approximation (KMC finite),
c.f. [22, Proposition 2].

The log density of the approximate estimator takes the simple form f(x) =
θ>φx, where φx ∈ Rm is an embedding of x into an m-dimensional feature space,
and θ ∈ Rm is estimated by θ̂ = C−1b from samples x. Given a weighted particle
system {(Wt,i, Xt,i)}Ni=1, then b, C are weighted averages of the form

b := − 1∑N
i=1 Wt,i

N∑
i=1

Wt,i

d∑
`=1

φ̈`x,

C := 1∑N
i=1 Wt,i

N∑
i=1

Wt,i

d∑
`=1

φ̇`x
(
φ̇`x
)>
,

with element-wise derivatives φ̇`x := ∂
∂x`

φx and φ̈`x := ∂2

∂x2
`

φx. Note that the
estimator can be updated in an online fashion once the particle system changes.
Rather than simulating Hamiltonian dynamics to generate a proposal, we here



take single gradient steps, i.e. the Markov density at in Algorithm 1 at X is
qt(·|X) = N (·|X + δ∇f(X), ν2Σt) for some parameters δ > 0, ν2 > 0. This keeps
the risk of divergence due to wrongly estimated gradients low. We arrive at kernel
GRIS, a gradient-free variant of GRIS [19].

3.3 Controlling emulator variance in PMC

PMC is somewhat sensitive to badly scaled proposals, as these are not rejected
as in a Metropolis-Hastings step. In particular for gradient emulators used within
PMC, variance reduction is important to avoid numerical divergence. The original
PMC paper introduces re-sampling in order to deal with un-weighted instead of
weighted samples [2], though at the cost of an increased variance. While some
approaches avoid re-sampling altogether [3], we consider re-sampling here as a
way to obtain a set of locations {X̃i

t}Ni=1 for our Markov proposal components of
the mixture qMixt

t (·) = 1
N

∑N
i=1 qt(·|X̃i

t), due to better behaving variance in high
dimension. With re-sampling, Monte Carlo variance only grows as O(D) rather
than O(exp(D)) without re-sampling, where D is the dimensionality [8].

Given a re-sampled number of N particles and the updated emulator qt, we
simulate from the mixture distribution qMixt

t with stratification, i.e. we draw
exactly one sample from each of the equally weighted mixture components.
Another view of this scheme is to draw a single realisation from qt(·|X̃i

t) for
all i = 1, . . . , N and Rao-Blackwellise. Finally, we can view the scheme as an
instance of the deterministic mixture idea [10]. Without this technique, i.e. using
weights π(·)/qt(·|X̃i

t), variance might grow catastrophically large, as too high
variance can be self-reinforcing by resulting in emulators of low quality.

4 Evaluation

We empirically evaluate performance of KASMC on a simple non-linear target, on
a multi-modal sensor network localisation problem, and in estimating Bayesian
model evidence in a model with an intractable likelihood on a real-world dataset.
The final experiment uses a challenging stochastic volatility model with S&P 500
data from Chopin et al. [5] to evaluate KGRIS.

For the KASMC experiments on static target distributions, a sequence of
incremental target densities can be defined using a geometric bridge with πt ∝
π1−ρt

0 πρt for some initial distribution π0, where (ρt)Tt=1 is an increasing sequence
satisfying ρT = 1. The bandwidth parameter of the kernel emulator models is set
to the median distance between particles [12].

We also note these algorithms have a free scaling parameter ν2, which we
would like to adapt online. To accomplish parameter tuning, we use the standard
framework of stochastic approximation for tuning MCMC kernels [1], i.e. tuning
acceptance rate αt towards an asymptotically optimal acceptance rate αopt =
0.234 for random walk proposals [18]. After the MCMC rejuvenation step, a
Rao-Blackwellised estimate α̂t of expected acceptance probability is available
by simply averaging the acceptance probabilities for all MH proposals. Then,



Fig. 1: Left: Proposal distributions around one of many particles (blue) for
each KASMC (red) and ASMC (green). KASMC proposals locally align to the
target density while ASMC’s global covariance estimate might result in poor
MH rejuvenation moves. Right: Improved convergence of all mixed moments
up to order 3 of KASMC compared to using SMC with static or adaptive
Metropolis-Hastings steps.

set ν2
t+1 = ν2

t + λt(α̂t − αopt) for some non-increasing sequence λ1, . . . , λT . This
strategy of approximating optimal scaling assumes that consecutive targets are
close enough so that the acceptance rate when using ν2

t to target πt provides
information about the expected acceptance rate when using ν2

t with target πt+1.
This is discussed further in the supplemental material.

4.1 KASMC: Improved convergence on synthetic nonlinear target

We begin by studying convergence of KASMC compared to existing algorithms on
a simple benchmark example: the strongly twisted banana-shaped distribution in
D = 8 dimensions used in Sejdinovic et al. [20]. This distribution is a multivariate
Gaussian with a non-linearly transformed second component, defined as

B(y; b, v) = N (y1; 0, v)N (y2; b(y2
1 − v), 1)

D∏
j=3
N (yj ; 0, 1).

We compare SMC algorithms using different rejuvenation MH steps: a static
random walk Metropolis move (RWSMC) with fixed scaling ν = 2.38/

√
D,

ASMC, and KASMC using a Gaussian RBF kernel. For the latter two algorithms,
all particles are used to compute the proposal, and a fixed learning rate of
λ = 0.1 is chosen to adapt scale parameters. Starting with particles from a
multivariate Gaussian N (0, 502), we use a geometric bridge that reaches the
target B(y; b = 0.1, v = 100) in 20 steps. We repeat the experiment over 30 runs.
Figure 1 (right) shows that KASMC achieves faster convergence of the first 3
moments, i.e. in MMD2 distance to a large benchmark sample.
2 The maximum mean discrepancy, here using a polynomial kernel of order 3, quantifies
differences of all mixed moments up to order 3 of two independent sets of samples.



4.2 A multi-modal application: sensor network localisation

We next study performance of KASMC on a multi-modal target arising in a
real-world application: inferring the locations of S sensors within a network,
as discussed in [14, 15]. We here focus on the static case: assume a number of
stationary sensors that measure distance to each other in a 2-dimensional space;
a distance measurement is successful with a probability that decays exponentially
in the squared distance, and the observation is missing otherwise. If distance is
measured, it is corrupted by Gaussian noise. The posterior over the unknown
sensor locations forms an extremely constrained non-linear and multi-modal
distribution induced by the spatial set-up.

Assume S sensors with unknown locations {xi}Si=1 ⊆ R2. Define an indicator
variable Zi,j ∈ {0, 1} for the distance Yij ∈ R+ between a pair of sensors (xi, xj)
being either observed (Zi,j = 1) or not (Zi,j = 0), according to

Zi,j ∼ Binom
(

1, exp
(
−‖xi − xj‖

2
2

2R2

))
.

If the distance is observed, then Yij is corrupted by Gaussian noise, i.e.

Yi,j |Zi,j = 1 ∼ N
(
‖xi − xj‖, σ2) ,

and Yi,j = 0 otherwise.
Previously, [14] focussed on MAP estimation of the sensor locations, and [15]

focussed on a well-conditioned case (S = 8 sensors and B = 3 base sensors with
known locations) that results in almost no ambiguity in the posterior. We argue
that Bayesian quantification of uncertainty is more important for cases where
noise and missing measurements does not allow to reconstruct the sensor locations
exactly. We therefore reuse the dataset from [15] (R = 0.3, σ2 = 0.02)3, but only
use the first S = 3 locations/observations. In order to encourage ambiguities
in the localisation task, we only use the first 2 base sensors of [15] with known
locations that each do observe distances to the S unknown sensors but not of
each other. Unlike [15], we use a Gaussian prior N (0.5, I) to avoid the posterior
being situated in a bounded domain.

Figure 2 shows the marginalised posterior for one run each of KASMC (SMC)
and KAMH (MCMC), where we matched the number of likelihood evaluations
(500,000). We run KASMC using 10, 000 particles and a bridge length of 50, and
MCMC-KAMH for 50× 10, 000 iterations of which we discard half as burn-in;
both were initialized with samples from the prior. Tuning parameters ν2 are
set using a diminishing adaptation schedule λt = 1/

√
t for KAMH and a fixed

learning rate λt = 1 for KASMC. MCMC is not able to traverse between the
multiple modes and interpretations of the data, in contrast to SMC.

In order to compare ASMC to KASMC, we created a benchmark sample via
running 100 standard MCMC chains (randomly initialised to cover all modes)
3 Downloaded from http://www.ics.uci.edu/~slan/lanzi/CODES_files/

WHMC-code.zip on 8/Oct/2015.

http://www.ics.uci.edu/~slan/lanzi/CODES_files/WHMC-code.zip
http://www.ics.uci.edu/~slan/lanzi/CODES_files/WHMC-code.zip
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Fig. 2: Posterior samples of unknown sensor locations (in color) by kernel-based
SMC and MCMC on the sensors dataset. The set-up of the true sensor locations
(black dots) and base sensors (black stars) causes uncertainty in the posterior.
SMC recovers all modes while MCMC does not. The posterior has a clear non-
linear structure.

each for 50000 iterations, discarding half the samples as burn-in, and randomly
down-sampling to a size of 100. We then compute the empirical MMD distance
to the output of the individual algorithms, averaged over 10 runs. For the chosen
number of sensors, ASMC and KASMC perform similarly. With less sensors, i.e.
more ambiguity, KASMC produces samples with both less MMD distance from a
benchmark sample and less variance. For example, for a set-up with S = 2 and
1000 particles, we get a MMD distance to a benchmark sample of 0.76± 0.4 for
KASMC and 0.94± 0.7 for ASMC.

4.3 KASMC: evidence estimation in Gaussian process classification

Following Sejdinovic et al. [20], we consider Bayesian classification on the UCI
Glass dataset, discriminating window glass from non-window glass, using a
Gaussian process (GP). It was found that the induced posterior is indeed non-
linear [22, 20]. In Sejdinovic et al. [20], samples from the marginal posterior
over GP hyper-parameters were simulated (the GP latent variables integrated
out). We emphasise a different point here: KSMC’s ability to estimate the model
evidence as compared to KAMH, and its faster convergence compared to ASMC.

Consider the joint distribution of latent variables f , labels y (with covariate
matrix X), and hyper-parameters θ, given by

p(f ,y, θ) = p(θ)p(f |θ)p(y|f),

where f |θ ∼ N (0,Kθ), with Kθ modelling the covariance between latent variables
evaluated at the input covariates. Consider the binary logistic classifier, i.e.
p(yi|fi) = 1

1−exp(−yifi) where yi ∈ {−1, 1}. In order to perform Bayesian model
selection (i.e. comparing different covariance functions), we need to estimate
the model evidence of the marginal posterior given the hyper-parameters. Here,
the marginal likelihood p(y|θ) is intractable for non-Gaussian likelihoods p(y|f).



Fig. 3: Estimating model evidence
of a GP using the IS2 framework.
The plot shows the MC variance
over 50 runs as a function of the
size of the particle system.
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Fig. 4: Convergence of RMSE for estimat-
ing all elements of the posterior covari-
ance matrix of the stochastic volatility
model.

We estimate model evidence for the GP classifier equipped with a standard
Gaussian Automatic Relevance Determination (ARD) covariance kernel; an
unbiased estimate can be obtained using importance sampling

p̂(y|θ) := 1
nimp

nimp∑
i=1

p(y|f (i))p(f
(i)|θ)

q(f (i)|θ)
, (2)

where
{

f (i)}nimp

i=1 ∼ q(f |θ) are nimp importance samples, e.g. from a Laplace
approximation of p(f |y, θ). We here do not tune the number of ’inner’ importance
samples, but follow [20] and use nimp = 100.

Figure 3 shows that evidence estimates of KASMC exhibit less variance than
those of ASMC. The ground truth model evidence was established via running
20 SMC instances using N = 1000 particles and a bridge length of 30, and
averaging their evidence estimates. The experiment is performed 50 times, using
N = 100 particles and a bridge length of 20, starting from he prior on the log
hyper-parameters π0 = p(θd) ≡ N (0, 52). The learning rate is constant λt = 1,
and adaptation is towards an acceptance rate of 0.23.

4.4 KGRIS: stochasitic volatility model with intractable likelihood

A particularly challenging class of Bayesian inverse problems are stochastic volatil-
ity models. As time series models, they often involve high-dimensional nuisance
variables, which usually cannot be integrated out analytically. Furthermore, risk
management necessitates to account for parameter and model uncertainty, and
models have to capture the non-linearities in the data [5]. We here concentrate
on the prediction of daily volatility of asset prices, reusing the model and dataset
studied by Chopin et al. [5] to evaluate KGRIS. Due to the lack of analytically
available gradients for this model, we compare two gradient free PMC versions:



KGRIS and a random walk PMC with global covariance adaptation in the style
of Haario et al. [13].

Let st be the value of some financial asset on day t, then yt = 10(5/2) log(st/st−1)
is called the log-returns (upscaling for numerical reasons). We model the observed
log-return yt as dependent on a latent vt by the observation equation

yt = µ+ βvt +
√
vtεt

for t ≤ 1. Here εt is a sequence of i.i.d. standard Gaussian errors and vt is assumed
to be a stationary stochastic process known as the actual volatility. Chopin et al.
[5] develop a hierarchical model for vt based on the idea of analytically integrating
a continuous time volatility model over daily intervals [for details see 5]. Using
this construction, the (discrete time) vt is parameterised by stationary mean ξ
and variance ω2 of the so called spot volatility and the exponential decay λ of its
auto-correlation. This results in the following model for the actual volatility vt:

k ∼ Pois(λξ2/ω2), c1:k ∼ U(t, t+ 1), e1:k ∼ Exp(ξ/ω2)

zt+1 = zt exp(−λ) +
k∑
j=1

ej exp(−λ(t+ 1− cj))

vt+1 = λ−1
(
zt − zt+1 +

k∑
j=1

ej

)
, xt+1 = (vt+1, zt+1)>

where zt is the discretely sampled spot volatility process and (vt+1, zt+1)> is the
Markovian representation of the state process. The variables k, c1:k and e1:k are
generated independently for each time period. For k = 0, the set 1 : k is defined to
be empty. The dynamics imply Γ (ξ2/ω2, ξ2/ω2) to be the stationary distribution
for zt, which is also used as the initial distribution on z0. The parameters of the
model are θ = (µ, β, ξ, ω2, λ) and the likelihood is intractable. Chopin et al. [5]
developed a sampler for θ based on iterated batch importance sampling using
nested SMC with pseudo-marginal MCMC moves for integrating out the xt and
dubbed their approach SMC2.

In our experiment, we use KGRIS proposals in a population Monte Carlo
setting, i.e. without resorting to MCMCmoves at all. We re-use the code developed
for the original SMC2 paper in order to integrate out the xt and thus get likelihood
estimates, with the same settings for algorithm parameters. The observed st are
the 753 observations from consecutive days of the S&P 500 index also used by
Chopin et al. [5]. KGRIS uses a particle system of increasing sizes with each
particle going through 100 iterations. See Figure 5 in the Appendix for a plot of
the pair-wise marginals of this posterior.

We use the same vague priors as Chopin et al. [5],

µ ∼ N (0, σ2 = 2), β ∼ N (0, σ2 = 2), ξ ∼ Exp(0.2)
ω2 ∼ Exp(0.2), λ ∼ Exp(1).



Figure 4 shows that the incorporated gradients lead to better performance
of KGRIS in estimating the target covariance matrix. This is in-line with the
finding that GRIS improves over pure random walk methods [19].

5 Discussion

In this paper, we developed a framework for kernel sequential Monte Carlo.
KSMC adaptively learns the target geometry via kernel emulators and subse-
quently uses this information for local proposals. KSMC is especially attractive
in the case where likelihoods and gradients are intractable. We instantiated two
algorithms within KSMC: estimating nonlinear covariance in combination with
MCMC rejuvenation and estimating gradients in combination with importance
sampling proposals. Both significantly outperform state-of-the-art gradient-free
SMC algorithms in practice. We conclude with some discussion on computational
complexity, more general usage of the learned emulators, and on the relative
benefits of PMC in the kernel setting.

Computational costs & increasing dimensions. While adaptive schemes for SMC
(and MCMC) can increase statistical efficiency of the sampling scheme, they
impose additional computational costs. Somewhat surprisingly, however, these
relatively large costs do not severely impact the efficiency per runtime ratio
in practice. The reason is that in the context of intractable likelihoods, the
computational cost of fitting a kernel emulator is typically dominated by the
larger cost of evaluating model likelihood. In our real-world experiments on GP
classification and a stochastic volatility model in Sections 4.3 and 4.4, a profiler
reveals that less than 5% of the overall wall-clock time is spent in computing
kernel informed proposals. This effect increases with dataset size and model
complexity, as evaluating likelihood gets more costly. Clearly however, in the
case where we need not resort to pseudo-marginal or SMC2 type samplers, the
application of kernel based estimators might result in slower sampling without
much gain in Monte Carlo error.

In growing dimensions, the number of data required to sufficiently estimate
nonlinear covariance and gradients quickly becomes infeasible. High dimensional
sampling problems typically arise in non-parametric models, e.g. Gaussian pro-
cesses, where each data point comes with additional parameters. In the intractable
likelihood framework that we consider here, however, the marginal posterior over
hyper-parameters typically is independent of such latent variables — and there-
fore usually of moderate dimension. Random walk methods, which are the default
choice for intractable likelihoods, scale badly in high dimensions themselves [16].
Our method is an improvement in the intermediate case: closed form gradients
are not available, but the dimensionality of the problem allows to estimate the
target geometry just accurately enough to improve mixing. Strathmann et al.
[22] reported their gradient estimator to scale up from dozens to a hundred
dimensions on laptop computers, depending on smoothness properties of the
target. It is an active area of research to further scale up these techniques by
exploiting structure in the target density.



Emulators as a posterior approximation. The kernel approximation of the target
density could be considered itself as an output of our algorithms, representing
the posterior directly instead of using the kernel approximation within a sampler.
There are a number of problems with this approach though: firstly, we note that
our emulator models do not need to be perfect to generate useful proposals,
therefore allowing us to exploit posterior structure much earlier (even with non-
perfect model fit) during sampling, still resulting in a correct SMC sampler. Also,
approximating integrals of test functions with respect to the posterior using the
kernel approximation is not possible in closed form, while it is straight forward
using a Monte Carlo sum. For example, assume a log density model f(x) =∑
i αik(xi, x). For the Gaussian kernel k(x, y) = exp(−||x − y||2), the density

is the exponential of a sum of Gaussian centred at the points xi. Computing
an integral as simple as the posterior mean, µ = Z−1 ∫ x exp(

∑
i αi exp(−||xi −

x||2))dx, already is intractable, even if the evidence Z were known. Thirdly, it is
not possible to sample from the kernel emulator directly using ordinary Monte
Carlo. One could imagine running a second MCMC/SMC targeting the emulator
model. Not only would this defeat the purpose of the algorithm (this is the
problem we are trying to solve in the first place), it also leads to samples that
are not guaranteed to consistently estimate posterior expectations unlike kernel
SMC or kernel MCMC.

SMC versus PMC for kernel based proposals. The consensus in the wider SMC
community is that using an artificial sequence of proposal distributions for
sampling from a static target is preferable to the PMC approach. This is based
on the fact that the coverage of the final target is better in these tempering-style
algorithms. It however results in a considerable computational investment for
those iterations where an intermediate target is considered.

We also note that on-line updates of the kernel emulator are not possible:
the target changes in every iteration. The contrary is true in PMC, where the
the actual distribution of interest is targeted in every iteration. Here, a popular
approximation technique of kernels is a good fit: By expressing the emulator
model in terms of finite dimensional random Fourier features, we can perform
cheap on-line updates [22]. The emulator therefore can accumulate information
from all PMC iterations without the computational efforts of re-computing its
solution, providing a relative advantage to SMC in this context.
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A Implementation details

In this section, we cover a number of implementation details for using KASMC in
practice, such as optimal scaling, adaptive re-sampling and re-weighting between
iterations.

A.1 Scaling parameters

Similar to other MH proposals, KAMH has a free scaling parameter denoted ν2

which we would like to adapt after one SMC iteration. To accomplish parameter
tuning, we use the standard framework of stochastic approximation for tuning
MCMC kernels [1], i.e. tuning acceptance rate αt towards an asymptotically
optimal acceptance rate αopt = 0.234 for random walk proposals [18]. More
precisely, after the MCMC rejuvenation step, a Rao-Blackwellised estimate α̂t of
expected acceptance probability is available by simply averaging the acceptance
probabilities for all MH proposals. Then, set

ν2
t+1 = ν2

t + λt(α̂t − αopt) (3)

for some non-increasing sequence λ1, . . . , λT . This strategy of approximating
optimal scaling assumes that consecutive targets are close enough so that the
acceptance rate when using ν2

t to target πt provides information about the
expected acceptance rate when using ν2

t with target πt+1. As an alternative to
this, one could treat ν2

t as an auxiliary random variable and define a distribution
over it designed to maximise expected utility, an approach taken in the adaptive
SMC sampler [11].

A.2 Construction of a target sequence

One possibility for constructing a sequence of distributions is the geometric bridge
defined by

πt ∝ π1−ρt

0 πρt

for some initial distribution π0, where (ρt)Tt=1 is an increasing sequence satisfying
ρT = 1. This is the construction used in the experimental section. Another
construction is to use a mixture πt ∝ (1− ρt)π0 + ρtπ. When π is a Bayesian
posterior, one can also add more data with increasing t, e.g. by defining the
intermediate distributions as πt(X) = π(X|d1, . . . , dbρtDc) where dj is a datapoint
and D is the number of data points. This results in an online inference algorithm
called Iterated Batch Important Sampling (IBIS) [4]. In IBIS especially, we can
apply non-diminishing adaptation, unlike in adaptive MCMC.

When using a distribution sequence that computes the posterior density π
using the full dataset (such as the geometric bridge or the mixture sequence), one
can reuse the intermediate samples when targeting πt for posterior estimation.
As the value of π is computed for the geometric bridge and the mixture sequence,
we re-use the weight π(X)/πt−1(X) for posterior estimation while employing



πt(X)/πt−1(X) to inform proposal distributions at iteration t. This way, the
evaluation of π (which is typically costly) is put to good use for improving the
posterior estimate.

As a simple alternative, leading to the algorithm known as Population Monte
Carlo (PMC) [2], we can simply target the final distribution π at each iteration,
i.e. with all πt = π. The original work on PMC exhibited striking resemblance of
commonly used MCMC methods such as Random Walk metropolis, often finding
that the same proposal kernel with PMC produces better estimates than with
MCMC [2].

A.3 Re-weighting and adaptive re-sampling

The fact that the weighted approximation to the final target is returned in our
algorithm stems from the fact that this approximation has lower variance than
the re-sampled particle system [8]. This is why in practice re-sampling might not
be performed at every iteration. Rather, re-sampling only when Effective Sample
Size (ESS) for the current target falls below a certain threshold will decrease
Monte Carlo variance. For details we refer to reviews on SMC [8, 9]. Furthermore,
care should be taken with respect to implementation of re-weighting: caching
values between iterations saves much computation time.

A.4 Intractable Likelihoods and Evidence Estimation

In the the case where likelihoods are intractable, SMC is still a valid algorithm
when likelihood values can be estimated unbiasedly. This can be done using
e.g. importance sampling or SMC [23, 5]. A simple way to think about such
nested estimation schemes is in terms of an extended sampling space that spans
the actual parameters of interest as well as any nuisance variables. Intractable
likelihoods usually result in unavailability of gradients. Consequently, efficient
gradient-based sampling schemes based such as GRIS or HMC are unavailable.
Current practice there is based on moving particles using random walk schemes
solely.

An important issue in Bayesian model selection and averaging is that of
estimating the normalizing constant, or evidence. The evidence is the marginal
probability of the data under a model and can easily be estimated in SMC
instantiations [8, 11] – as compared to MCMC. This enables routine computation
of Bayes factors and posterior model probabilities while also sampling from
a posterior over parameters of each model. Under the assumption that the
normalizing constant Z0 of π0 (the distribution that is used for initially setting
up the particle system) is known, one can estimate the ratio of normalizing
constants of any two consecutive targets by

Zt
Zt−1

≈ 1
N

N∑
j=1

Wt,j (4)



for Wt,j = πt(Xt−1,j)/πt−1(Xt−1,j) and thus an estimate for Z = ZT can be
found recursively by

Z = ZT ≈ Z0

T∏
t=1

1
N

∑
j

Wt,j (5)

starting with known value Z0. When the likelihood is intractable and importance
weights are noisy, evidence estimation is still valid [23, Lemma 3].



Fig. 5: Samples from the doubly stochastic volatility model used in Section 4.4.
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