10,221 research outputs found
The Mr 28,000 gap junction proteins from rat heart and liver are different but related
The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens
Vlasov simulation in multiple spatial dimensions
A long-standing challenge encountered in modeling plasma dynamics is
achieving practical Vlasov equation simulation in multiple spatial dimensions
over large length and time scales. While direct multi-dimension Vlasov
simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of
Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010,
http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown
promising results, in this paper we present an alternative, the Vlasov Multi
Dimensional (VMD) model, that is specifically designed to take advantage of
solution properties in regimes when plasma waves are confined to a narrow cone,
as may be the case for stimulated Raman scatter in large optic f# laser beams.
Perpendicular grid spacing large compared to a Debye length is then possible
without instability, enabling an order 10 decrease in required computational
resources compared to standard particle in cell (PIC) methods in 2D, with
another reduction of that order in 3D. Further advantage compared to PIC
methods accrues in regimes where particle noise is an issue. VMD and PIC
results in a 2D model of localized Langmuir waves are in qualitative agreement
ATS-6 spacecraft: In-flight antenna pattern measurement
Antenna patterns, principally associated with the 9.1 meter parabolic antenna of the ATS-6 spacecraft, were measured while in orbit at quasi-stationary synchronous altitude. Controlling the spacecraft attitude permitted a scanning of the spacecraft antenna pattern over the Rosman ground station, thus achieving the measurement of the antenna pattern contour. Patterns were determined in terms of relative gain referenced in position to the spacecraft body coordinates by means of signal power measurements made using a linear detector. These data were subsequently correlated with the attitude data to define the antenna patterns. Antenna patterns measured are presented and compared with available preflight patterns
Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients
We analyze the reflection and transmission coefficients calculated from
transfer matrix simulations on finite lenghts of electromagnetic metamaterials,
to determine the effective permittivity and permeability. We perform this
analysis on structures composed of periodic arrangements of wires, split ring
resonators (SRRs) and both wires and SRRs. We find the recovered
frequency-dependent permittivity and permeability are entirely consistent with
analytic expressions predicted by effective medium arguments. Of particular
relevance are that a wire medium exhibits a frequency region in which the real
part of permittivity is negative, and SRRs produce a frequency region in which
the real part of permeability is negative. In the combination structure, at
frequencies where both the recovered real part of permittivity and permeability
are simultaneously negative, the real part of the index-of-refraction is found
also to be unambigously negative.Comment: *.pdf file, 5 figure
Object knowledge modulates colour appearance
We investigated the memory colour effect for colour diagnostic artificial objects. Since knowledge about these objects and their colours has been learned in everyday life, these stimuli allow the investigation of the influence of acquired object knowledge on colour appearance. These investigations are relevant for questions about how object and colour information in high-level vision interact as well as for research about the influence of learning and experience on perception in general. In order to identify suitable artificial objects, we developed a reaction time paradigm that measures (subjective) colour diagnosticity. In the main experiment, participants adjusted sixteen such objects to their typical colour as well as to grey. If the achromatic object appears in its typical colour, then participants should adjust it to the opponent colour in order to subjectively perceive it as grey. We found that knowledge about the typical colour influences the colour appearance of artificial objects. This effect was particularly strong along the daylight axis
Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback
We model the plume "splashback" phase of the SL9 collisions with Jupiter
using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray
radiative transport, and we present validation tests. We couple the infalling
mass and momentum fluxes of SL9 plume material (from paper I) to a jovian
atmospheric model. A strong and complex shock structure results. The modeled
shock temperatures agree well with observations, and the structure and
evolution of the modeled shocks account for the appearance of high excitation
molecular line emission after the peak of the continuum light curve. The
splashback region cools by radial expansion as well as by radiation. The
morphology of our synthetic continuum light curves agree with observations over
a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume
is a shell of mass at the highest velocities, which we term the "vanguard".
Portions of the vanguard ejected on shallow trajectories produce a lateral
shock front, whose initial expansion accounts for the "third precursors" seen
in the 2-micron light curves of the larger impacts, and for hot methane
emission at early times. Continued propagation of this lateral shock
approximately reproduces the radii, propagation speed, and centroid positions
of the large rings observed at 3-4 microns by McGregor et al. The portion of
the vanguard ejected closer to the vertical falls back with high z-component
velocities just after maximum light, producing CO emission and the "flare" seen
at 0.9 microns. The model also produces secondary maxima ("bounces") whose
amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J.
latex, version including full figures at:
http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g
Models with short and long-range interactions: phase diagram and reentrant phase
We study the phase diagram of two different Hamiltonians with competiting
local, nearest-neighbour, and mean-field couplings. The first example
corresponds to the HMF Hamiltonian with an additional short-range interaction.
The second example is a reduced Hamiltonian for dipolar layered spin
structures, with a new feature with respect to the first example, the presence
of anisotropies. The two examples are solved in both the canonical and the
microcanonical ensemble using a combination of the min-max method with the
transfer operator method. The phase diagrams present typical features of
systems with long-range interactions: ensemble inequivalence, negative specific
heat and temperature jumps. Moreover, in a given range of parameters, we report
the signature of phase reentrance. This can also be interpreted as the presence
of azeotropy with the creation of two first order phase transitions with
ensemble inequivalence, as one parameter is varied continuously
Evidence of Titan's Climate History from Evaporite Distribution
Water-ice-poor, 5-m-bright material on Saturn's moon Titan has
previously been geomorphologically identified as evaporitic. Here we present a
global distribution of the occurrences of the 5-m-bright spectral unit,
identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and
examined with RADAR when possible. We explore the possibility that each of
these occurrences are evaporite deposits. The 5-m-bright material covers
1\% of Titan's surface and is not limited to the poles (the only regions with
extensive, long-lived surface liquid). We find the greatest areal concentration
to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations,
based on the correlation between 5-m-bright material and lakebeds, imply
that there was enough liquid present at some time to create the observed
5-m-bright material. We address the climate implications surrounding a
lack of evaporitic material at the south polar basins: if the south pole basins
were filled at some point in the past, then where is the evaporite
- âŠ