8,980 research outputs found

    A new analysis of 14O beta decay: branching ratios and CVC consistency

    Full text link
    The ground-state Gamow-Teller transition in the decay of 14O is strongly hindered and the electron spectrum deviates markedly from the allowed shape. A reanalysis of the only available data on this spectrum changes the branching ratio assigned to this transition by seven standard deviations: our new result is (0.54 \pm 0.02)%. The Kurie plot data from two earlier publications are also examined and a revision to their published branching ratios is recommended. The required nuclear matrix elements are calculated with the shell model and, for the first time, consistency is obtained between the M1 matrix element deduced from the analog gamma transition in 14N and that deduced from the slope of the shape-correction function in the beta transition, a requirement of the conserved vector current hypothesis. This consistency is only obtained, however, if renormalized rather than free-nucleon operators are used in the shell-model calculations. In the mirror decay of 14C a similar situation occurs. Consistency between the 14C lifetime, the slope of the shape-correction function and the M1 matrix element from gamma decay can only be achieved with renormalized operators in the shell-model calculation.Comment: 9 pages; revtex4; one figur

    Mechanical properties and formability of en AW-7075 in cold forming processes

    Get PDF
    Due to a low density and high tensile strength, the aluminum alloy EN AW 7075 T6 offers a high lightweight potential for structural components. Since its formability is limited at room temperature in the T6 temper state, the potential of this alloy for automotive bodies is only utilizable by adapted deep drawing processes. In recent years, process chains suited for warm and hot forming have been researched and developed. However, warm and hot forming solutions require additional process steps and a complex tooling system in comparison to cold forming processes. Alternatively, the forming of such blanks at room temperature in the W temper state is favorable since conventional tools can be used. The W temper state is a heat treatment condition achieved after solution heat treatment and subsequent quenching, which is characterized by an increased ductility. However, this condition is unstable, due to the onset of natural ageing. With increasing time after the quenching step, the strength of the material increases, which leads to a reduction of formability. Another phenomenon that occurs after quenching is the Portevin Le-Chatelier effect. This effect causes the formation of flow lines during cold forming and results in a decrease of ductility. Hence, the objective of the investigations was to determine the formability of EN AW 7075 as a function of the natural ageing time after solution heat treatment and quenching. Therefore, tensile tests of various aged samples were carried out. The results show a relation of the formability to the natural ageing time and a dependency on the quenching rate. Furthermore, a heat treatment strategy for EN AW-7075 was developed, that considers manufacturing processes like the cathodic dip coating. The influence of the quenching rate, ageing time and temperature as well as the influence of temperature of the paint baking process after the cathodic dip coating were considered. Therefore, a design of experiments and tensile tests were carried out. Thus, the deep drawing of EN AW-7075 at room temperature is particularly promoted. © 2020 Published under licence by IOP Publishing Ltd

    Targeted adjustment of residual stresses in hot-formed components by means of process design based on finite element simulation

    Get PDF
    The aim of this work is to generate an advantageous compressive residual stress distribution in the surface area of hot-formed components by intelligent process control with tailored cooling. Adapted cooling is achieved by partial or temporal instationary exposure of the specimens to a water–air spray. In this way, macroscopic effects such as local plastification caused by inhomogeneous strains due to thermal and transformation-induced loads can be controlled in order to finally customise the surface-near residual stress distribution. Applications for hot-formed components often require special microstructural properties, which guarantee a certain hardness or ductility. For this reason, the scientific challenge of this work is to generate different residual stress distributions on components surfaces, while the geometric as well as microstructural properties of AISI 52100 alloy stay the same. The changes in the residual stresses should therefore not result from the mentioned changed component properties, but solely from the targeted process control. Within the scope of preliminary experimental studies, tensile residual stresses in a martensitic microstructure were determined on reference components, which had undergone a simple cooling in water (from the forming heat), or low compressive stresses in pearlitic microstructures were determined after simple cooling in atmospheric air. Numerical studies are used to design two tailored cooling strategies capable of generating compressive stresses in the same components. The developed processes with tailored cooling are experimentally realised, and their properties are compared to those of components manufactured involving simple cooling. Based on the numerical and experimental analyses, this work demonstrates that it is possible to influence and even invert the sign of the residual stresses within a component by controlling the macroscopic effects mentioned above

    Orbital electron capture by the nucleus

    Get PDF
    The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases

    Two-Body B Meson Decays to η and η': Observation of B → η'K

    Get PDF
    In a sample of 6.6×10^6 produced B mesons we have observed decays B→η′K, with branching fractions B(B^+→η′K^+) = (6.5_(-1.4)^(+1.5)±0.9)×10^(-5) and B(B^0→η′K^0) = (4.7_(-2.0)^(+2.7)±0.9)×10^(-5). We have searched with comparable sensitivity for 17 related decays to final states containing an η or η′ meson accompanied by a single particle or low-lying resonance. Our upper limits for these constrain theoretical interpretations of the B→η′K signal

    Office-based Air-Fluid Exchange for Diabetic Post-Operative Vitreous Cavity Hemorrhage

    Get PDF
    Post-operative vitreous cavity hemorrhage (POVCH) is observed in 6-75% of eyes undergoing pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR). We describe our technique for office-based Air fluid exchange (AFX) in the treatment of POVCH. Sixteen eyes (15 patients) with PDR and POVCH undergoing office-based AFX between January 2006 and November 2016 were retrospectively identified. The pre- and post- procedure visual acuity (VA) and complications were compared between eyes with and without traction retinal detachment (TRD). Medicare charges for office-based AFX versus PPV were also analyzed. Mean age at the time of AFX was 55.31 (± 8.02) years. Nine eyes (56.25%) had TRD prior to PPV and 11 eyes (68.75%) were pseudophakic. The improvements in mean (± standard deviation [SD]) logMAR VA at the last postoperative visit (3 - 8 months) were 1.38 (± 0.99), 0.82 (± 0.91) and 2.09 (± 0.53) in all eyes, TRD eyes and non-TRD eyes, respectively. Complications included cataract progression, hypotony, and recurrence of TRD and ghost cell glaucoma. The total cost of outpatient AFX was $1,409.59 less than that of PPV. Office-based AFX is a cost-effective alternative treatment for non-clearing diabetic POVCH with an acceptable risk profile

    Electron beam profile imaging in the presence of coherent optical radiation effects

    Full text link
    High-brightness electron beams with low energy spread at existing and future x-ray free-electron lasers are affected by various collective beam self-interactions and microbunching instabilities. The corresponding coherent optical radiation effects, e.g., coherent optical transition radiation, render electron beam profile imaging impossible and become a serious issue for all kinds of electron beam diagnostics using imaging screens. Furthermore, coherent optical radiation effects can also be related to intrinsically ultrashort electron bunches or the existence of ultrashort spikes inside the electron bunches. In this paper, we discuss methods to suppress coherent optical radiation effects both by electron beam profile imaging in dispersive beamlines and by using scintillation imaging screens in combination with separation techniques. The suppression of coherent optical emission in dispersive beamlines is shown by analytical calculations, numerical simulations, and measurements. Transverse and longitudinal electron beam profile measurements in the presence of coherent optical radiation effects in non-dispersive beamlines are demonstrated by applying a temporal separation technique.Comment: 12 pages, 11 figures, submitted to Phys. Rev. ST Accel. Beam

    Semileptonic B Decays and Determination of |Vub|

    Full text link
    Semileptonic decays of the B mesons provide an excellent probe for the weak and strong interactions of the bottom quark. The large data samples collected at the B Factories have pushed the experimental studies of the semileptonic B decays to a new height and stimulated significant theoretical developments. I review recent progresses in this fast-evolving field, with an emphasis on the determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|.Comment: 16 pages, 4 figures, accepted by Mod. Phys. Lett.

    Office-based Air-Fluid Exchange for Diabetic Post-Operative Vitreous Cavity Hemorrhage

    Get PDF
    Post-operative vitreous cavity hemorrhage (POVCH) is observed in 6-75% of eyes undergoing pars plana vitrectomy (PPV) for proliferative diabetic retinopathy (PDR). We describe our technique for office-based Air fluid exchange (AFX) in the treatment of POVCH. Sixteen eyes (15 patients) with PDR and POVCH undergoing office-based AFX between January 2006 and November 2016 were retrospectively identified. The pre- and post- procedure visual acuity (VA) and complications were compared between eyes with and without traction retinal detachment (TRD). Medicare charges for office-based AFX versus PPV were also analyzed. Mean age at the time of AFX was 55.31 (± 8.02) years. Nine eyes (56.25%) had TRD prior to PPV and 11 eyes (68.75%) were pseudophakic. The improvements in mean (± standard deviation [SD]) logMAR VA at the last postoperative visit (3 - 8 months) were 1.38 (± 0.99), 0.82 (± 0.91) and 2.09 (± 0.53) in all eyes, TRD eyes and non-TRD eyes, respectively. Complications included cataract progression, hypotony, and recurrence of TRD and ghost cell glaucoma. The total cost of outpatient AFX was $1,409.59 less than that of PPV. Office-based AFX is a cost-effective alternative treatment for non-clearing diabetic POVCH with an acceptable risk profile

    A general viscosity model of Campi Flegrei (Italy) melts

    Get PDF
    Viscosities of shoshonitic and latitic melts, relevant to the Campi Flegrei caldera magmas, have been experimentally determined at atmospheric pressure and 0.5 GPa, temperatures between 840 K and 1870 K, and H2O contents from 0.02 to 3.30 wt%. The concentric cylinder technique was employed at atmospheric pressure to determine viscosity of nominally anhydrous melts in the viscosity range of 101.5 - 103 Pa·s. The micropenetration technique was used to determine the viscosity of hydrous and anhydrous melts at atmospheric pressure in the high viscosity range (1010 Pa·s). Falling sphere experiments were performed at 0.5 GPa in the low viscosity range (from 100.35 to 102.79 Pa·s) in order to obtain viscosity data of anhydrous and hydrous melts. The combination of data obtained from the three different techniques adopted permits a general description of viscosity as a function of temperature and water content using the following modified VFT equation: where η is the viscosity in Pa·s, T the temperature in K, w the H2O content in wt%, and a, b, c, d, e, g are the VFT parameters. This model reproduces the experimental data (95 measurements) with a 1σ standard deviation of 0.19 and 0.22 log units for shoshonite and latite, respectively. The proposed model has been applied also to a more evolved composition (trachyte) from the same area in order to create a general model applicable to the whole compositional range of Campi Flegrei products. Moreover, speed data have been used to constrain the ascent velocity of latitic, shoshonitic, and trachytic melts within dikes. Using petrological data and volcanological information (geometrical parameters of the eruptive fissure and depth of magma storage), we estimate a time scale for the ascent of melt from 9 km to 4 km depth (where deep and shallow reservoirs, respectively, are located) in the order of few minutes. Such a rapid ascent should be taken into account for the hazard assessment in the Campi Flegrei area
    corecore