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Abstract 

Viscosities of shoshonitic and latitic melts, relevant to the Campi Flegrei caldera 

magmas, have been experimentally determined at atmospheric pressure and 0.5 GPa, 

temperatures between 840 K and 1870 K, and H2O contents from 0.02 to 3.30 wt%. 

The concentric cylinder technique was employed at atmospheric pressure to determine 

viscosity of nominally anhydrous melts in the viscosity range of 101.5 - 103 Pa·s. The 

micropenetration technique was used to determine the viscosity of hydrous and anhydrous 

melts at atmospheric pressure in the high viscosity range (1010 Pa·s). Falling sphere 

experiments were performed at 0.5 GPa in the low viscosity range (from 100.35 to 102.79 Pa·s) 

in order to obtain viscosity data of anhydrous and hydrous melts. The combination of data 

obtained from the three different techniques adopted permits a general description of viscosity 

as a function of temperature and water content using the following modified VFT equation: 

where η is the viscosity in Pa·s, T the temperature in K, w the H2O content in wt%, and a, b, c, 

d, e, g are the VFT parameters. This model reproduces the experimental data (95 

measurements) with a 1σ standard deviation of 0.19 and 0.22 log units for shoshonite and 

latite, respectively. The proposed model has been applied also to a more evolved composition 

(trachyte) from the same area in order to create a general model applicable to the whole 

compositional range of Campi Flegrei products. 

Moreover, speed data have been used to constrain the ascent velocity of latitic, 

shoshonitic, and trachytic melts within dikes. Using petrological data and volcanological 

information (geometrical parameters of the eruptive fissure and depth of magma storage), we 

estimate a time scale for the ascent of melt from 9 km to 4 km depth (where deep and shallow 

reservoirs, respectively, are located) in the order of few minutes. Such a rapid ascent should 

be taken into account for the hazard assessment in the Campi Flegrei area. 
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1. Introduction 

Viscosity is a key factor governing both intrusive and volcanic processes. The most 

important parameters affecting the viscosity of silicate melts are melt composition and 

temperature (Bottinga and Weill, 1972; Shaw, 1972). Pressure has only a minor effect at 

crustal depths whereas crystals and bubbles have a dramatic influence (Kushiro et al., 1976; 

Pal, 2002; Behrens and Schulze, 2003; Vetere et al., 2010). Among compositional parameters, 

the volatile content (mainly H2O) is critical because it affects the rheological behaviour of 

melts and thus eruptive styles. Consequently, an appropriate knowledge of magma viscosity 

as a function of dissolved volatiles is mandatory to obtain reliable models of volcanic 

processes (i.e., magma ascent, fragmentation, and dispersion) which in turn required to 

predict realistic volcanic scenarios and forecast volcanic hazards (Misiti et al., 2006; Papale, 

2001). 

The Campi Flegrei volcanic complex, located in the urbanised Neapolitan area (South 

Italy), was chosen as case study because it is an active volcanic field that experienced 

predominantly strongly explosive volcanic activity. The city of Pozzuoli lies close to the 

Solfatara crater while Naples, with 1.5 million inhabitants, is nearby, between Campi Flegrei 

and Vesuvius. The volcanic risk in this area is significant because of the large population and 

this is a compelling reason to better understand the evolution of the Campi Flegrei complex 

and the mechanisms leading to explosive eruptions. 

Viscosity of two Campi Flegrei compositions, representative of parental magmas, has 

been investigated in the temperature range 840 - 1870 K and H2O contents in the melt ranging 

from 0.01 (nominally anhydrous) to 3.30 wt%. The combination of viscosity data obtained in 

a wide temperature and water content range, permits a general description of the viscosity as a 

function of temperature and water content using a modified Tamman-Vogel-Fulcher equation. 
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Using this equation we can calculate viscosity values for the two studied compositions 

under the conditions inferred for Campi Flegrei magma chamber. One important application 

of these data is the estimate of the flow regime and the magma rising velocity from deep to 

shallow reservoirs. 

 

2. Geological and volcanological setting  

The Campi Flegrei (Fig. 1) is a restless, nested caldera structure resulting from two 

main collapses related to the two most powerful eruptions of the volcanic system (Orsi et al., 

1996 and reference therein): the Campanian Ignimbrite (37 ka, Deino et al., 1992; Armienti et 

al., 1983; Rosi and Sbrana, 1987; Rosi et al., 1983, 1996; Barberi et al., 1991; Fisher et al., 

1993; Civetta et al., 1997) and the Neapolitan Yellow Tuff (12 ka, Alessio et al., 1971; Orsi 

and Scarpati, 1989; Orsi et al., 1992, 1995, 1996; Wohletz et al., 1995). 

The two investigated compositions are a shoshonite from Minopoli and a latite from 

Fondo Riccio. The latter was an explosive strombolian eruption occurred near the centre of 

the Campi Flegrei caldera (9.5 ka), whereas the shoshonite belongs to an explosive 

hydromagmatic eruption that occurred along the regional fault system in the northern portion 

of the same caldera (9.7 ka). Both are peculiar in the Campi Flegrei activity because their 

products present the less evolved compositions compared to those erupted from other 

eruptions in the area. For detailed geological, volcanological and chemical descriptions of 

these eruptions see Di Vito et al. (1999), D´Antonio et al. (1999) and Pappalardo et al., 

(2002). 

In melt inclusions from both eruptions detected H2O and CO2 contents range from 0.2 to 

2.84 wt% and from 172 to 1100 ppm, respectively (Mangiacapra et al., 2008). For both 

investigated eruptions two depths of melt inclusions eruptions were estimated at 4 and 9 km 
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(Mangiacapra et al., 2008). In addition, these results closely agree with the geophysical 

analysis of Zollo et al. (2008). 

 

3. Analytical and Experimental Methods 

3.1 Starting material 

The starting material was produced from two natural scoria samples belonging to 

Minopoli and Fondo Riccio eruption deposits, respectively (Di Vito et al., 1999). These 

samples were selected for this study and for previous ones (Di Matteo et al., 2007; Cannatelli 

et al., 2007) because they represent the less evolved magmas among Campi Flegrei products: 

i.e., shoshonite (Minopoli) and latites (Fondo Riccio) (D‘Antonio et al., 1999).  

Anhydrous starting materials for micropenetration and concentric cylinder viscosity 

measurements were prepared at Department of Earth and Environmental Sciences, Ludwig 

Maximilians Universität München (Germany). About 100 g of both samples were melted and 

homogenised in a Pt80Rh20 crucible placed in a MoSi2 box furnace at 1873 K for about 1 hour 

at atmospheric pressure. The obtained anhydrous melts was then quenched, by partially 

dipping the crucible in water, in order to obtain crystal and bubble free glasses. An aliquot of 

the anhydrous quenched glass was crushed and ground in an agate mortar and the glass 

powder was loaded in platinum capsules (3 mm in diameter and 20 mm in length) with a 

known amount of doubly-distilled water (up to 3 wt %). Hydrous glasses were, thus, 

synthesized in an internally heated pressure vessel for 24 hours at 150 MPa and 1473 K; 

pressure and temperature have been chosen to have water under-saturated samples. Runs were 

isobarically quenched to avoid crystallization. 

For low-temperature micropenetration measurements, cylinders of anhydrous and 

hydrous glasses were sawn into 3 mm long pieces. The disks were then polished on both sides 

and stored in a desiccator until used in the experiments. 
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Starting mate rial for f alling spher e e xperiments was prepared a t the Insitute of 

Mineralogy, Leibniz University Hannover (Germany). Anhydrous samples were prepared by 

de-hydrating natural sample rock powders in a Pt crucible in air at 1673 K for 1 hour. Glasses 

with various H2O content were then synthesised in an internally heated pressure vessel at 300 

MPa, 1523 K (24 h duration) in sealed AuPd capsules (40 mm long, 6.0 mm inner diameter) 

containing the powdered natural sample and the desired amount of  dist illed water (from 2.3 

up to 3.3 wt%). Quench was isobaric with control of pressure to within 25 bar of the nominal 

pressure. 

Composition of  star ting mate rials (Table 1) was determined b y electron mi croprobe 

analyses (JEOL JXA 8200) at the Istituto Nazionale di Geofisica e Vulcanologia (INGV) of 

Rome (Italy). Analysis conditions were: probe diameter of 5 m, accelerating voltage of 15 

kV, and beam current of 6 nA. 

 

3.2 Pre- and post-experimental water determination  

Bulk water contents o f g lasses before and after v iscosity measurements were 

determined by  K arl-Fischer titration (KF T) and F ourier Transform In fraRed (F TIR) 

spectroscopy at the Department of Mineralogy, Leibniz University Hannover. Results are 

reported in  Table 1 . The  precision o f the K FT data is within ±0.10 w t% H 2O. FTIR  

measurements followed the m ethod described in Behrens et al. ( 1996). The pe ak 

heights of the near-infrared (NIR) absorption bands at 4500 cm-1 (combination mode of OH 

groups) and 5200 cm-1 (combination mode of H2O molecules) were used to analyze the water 

content of the glass after experiments. Absorption spectra of doubly polished glass slabs with 

thickness of 0.13 –0.15 mm we re collected using a n I R microscope (Bruker IRscope II ) 

connected to a F TIR sp ectrometer (Bruker IFS88). In th e ne ar-infrared (NIR), the  spectra 

were measured using a tungsten light source, a  CaF2 beamsplitter and a narrow range MCT 
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detector. T ypically 50–100 sc ans were a ccumulated for  e ach spe ctrum with a spec tral 

resolution of 4  c m-1. Simple li near baselines were fitted to both NIR peaks (TT ba seline 

according to Ohlhorst et al., 2001). The water content of the nominally dry starting glass was 

determined by measuring the peak height of the mid-infrared (MIR) absorption band at 3550 

cm-1 after subtracting a linear baseline. A bulk spectrum was collected in the main chamber of 

the FTIR spectrometer using a polished glass section that was placed on a hole aperture 2 mm 

in diame ter. Measurement c onditions were: g lobal li ght source, KBr b eam splitter, DTG S 

detector, 2 cm-1 spectral resolution, 100 a ccumulated scans. Concentrations of h ydrous 

species and tot al water we re calculated from peak he ight of a bsorption ba nds using the 

Lambert–Beer law (e.g., Stolper, 1982). For the calculation, the relationship between density 

and water content, the molar absorption coefficients of the absorption bands, and the sample 

thickness are ne eded. D ensities of h ydrous glasses were c alculated using Oc hs and Lange 

(1999) equation; molar absorption coefficients used are 0.93, 0.81, and 60 L·mol-1·cm-1 for the 

5200, 4500, and 3550 cm-1 bands, respectively, after Di Matteo et al. (2006); sample thickness 

has been determined with a precision of ±2 m by using a Mitutoyo micrometer. 

 

3.3. Viscosity measurements 

3.3.1. Concentric cylinder technique.  

High-temperature sh ear viscosities were mea sured a t 1 a tm in the temp erature r ange 

1400-1870 K using a  B rookfield DVIII+ c oncentric c ylinder. The  concentric c ylinder 

apparatus allows to determine viscosities of anhydrous melts in the range 10-1-105 Pa s with 

an accuracy of ±0.05·log10 Pa s. The starting glass is loaded in a cylindrical Pt80Rh20 crucible 

(5.1 cm height, 2.56 cm inner di ameter a nd 0.1  c m wall thi ckness). Th e viscomete r head 

drives a spindle at a range of constant angular velocities (0.5-100 rpm) and digitally records 

the torque e xerted on t he spind le by the sample. The spind les are ma de fr om the same 
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material as the crucible, vary in length and diameter, and have a cylindrical cross section with 

45° conical ends to reduce friction effects. The sample is heated in a Deltech Inc. furnace with 

six MoSi2 heating elements. The crucible is loaded into the furnace from the base (Dingwell, 

1986; Dingwell and Virgo, 1988 and Dingwell, 1989). The stirring apparatus is coupled to the 

spindle through a hinged connection. The spindle and the head were calibrated with a Soda–

Boro–Silica glass NBS No. 710 whose viscosity as a function of temperature is well known. 

Samples are melted and stirred in the Pt80Rh20 crucible for at least 12 hours, but often up to 4 

days until optical inspection of the stirring spindle indicated that melts were crystal- and 

bubble-free. At this point the torque value of the material is determined using a torque 

transducer on the stirring device. Then viscosity is measured decreasing temperature of 25 

K/min. Once the required steps have been completed, the temperature is increased to the 

initial value to check if any drift of the torque values have occurred, due to volatilisation or 

instrument drift. Finally, after the high temperature viscometry, all the re-melted specimens 

are removed from the furnace and quenched by pouring material on an iron plate, in order to 

avoid crystallization. 

 

3.3.2. Micropenetration technique. 

Low-temperature viscosities of anhydrous and hydrous quenched melts were determined 

at 1 atm in the temperature range 840-1045 K by micropenetration viscometry as described in 

Brückner and Demharter (1975), Douglas et al. (1965), and Dingwell et al. (1996). This 

technique allows determining viscosity in the range 108.5 to 1012 Pa s with an error of ±0.06 

log units (Hess et al., 1995). To calibrate the system a Standard Glass I DGG has been used 

(standard from the Deutsche Glasstechnische Gesellschaft). Viscosity measurements were 

performed in a modified vertical push-rod dilatometer (BÄHR DIL 802V) at the Maximilians 

Universität München (Germany). The basic principle in the technique is to measure the rate at 
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which an iridium hemisphere moves into a glass disk surface under a fixed load. Penetration 

of the Ir hemisphere into the glass sample is a function of  the viscosity of the sample. The  

absolute viscosity was calculated by using the following equation: 

η = 0.1875 P t / r0.5 l1.5 (1) 

where 0.1875 is a geometric constant, P is the applied force (in N), r is the radius (in m) of 

the hemisphere, t is the penetration time (min) and l is the indentation distance radius (in m) 

(Hess et al., 1995). 

The applied force for a ll the micropenetration measurements in the present wor k was 

about 1.2 N. Double po lished 3 mm  thi ck g lass disks  obtained from either a nhydrous or 

hydrous glasses (see a bove) were pla ced in a silica rod sample holde r, in the push-rod 

dilatometer under Ar gas flow. The  sa mples were he ated up to the dwell tempe rature a t a 

constant rate of 10 K/mi n, held at this temperature for 15 min (for hydrated samples) and 90 

min (for anhydrous samples) to allow thermal equilibration and structural relaxation, then the 

viscosity measurement was performed over approximately 5 mi n. Different glass disks from 

the same anhydrous and h ydrous glasses were u sed in each measurement in order to avoid 

effects of propagating dehydration.  

 

3.3.3. Falling sphere method 

High temp erature visco sities of anhydrous and h ydrous melts  were d etermined b y 

means of the falling sphere method (Shaw , 1963) at the HP-HT Laboratory of Experimental 

Volcanology a nd G eophysics of INGV. The me thod is based on the determination of  the  

settling distance of a sphere in a liquid and requires the determination of the exact position of 

the sphere in a g lass c ylinder before a nd a fter the experiment. Details of the employed 

technique are de scribed in Vetere e t al. (2008) and in Misiti e t al. (2009). Starting g lass, 

ground to powder and dried in an oven at temperature of 383 K for the anhydrous sample and 
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at 330 K for the hydrous one, was loaded in Pt capsule (15 mm long, 3.0 mm outer diameter) 

along with a Pt sphere. Depending on the water content of  the sample ( i.e. considering that 

more water implies a more fluid system and consequently higher speed of the falling sphere) 

the radius of the spheres was varied from 50 to 215 m. Loaded capsules were crimped and 

stored in an oven overnight to remove humidity and then welded. X-ray radiograph of each 

capsule was taken before the experiments to check the position of the sphere. Loaded capsules 

were inserted in a 19.1 mm NaCl-crushable alumina-pyrex (nominally anhydrous samples) or 

NaCl-crushable alumina-pyrophillite-pyrex (hydrous samples; Freda et al., 2001) assemblies. 

Experiments were carried out in a piston c ylinder a pparatus (intrinsic redox condition 

NNO+2) at 0.5 GPa and temperatures between 1 423 and 1673  K. Experiments were firstly 

pressurized and then heated isobarically at a rate of 200 K/min up to 20 K below the set point. 

A rate of 40 K/min was used to reach the final temperature. The temperature was controlled 

by a W95Re5-W74Re26 thermocouple and held within 3K of the experimental temperature. The 

thermocouple was positioned such that its junction coincides with the cylindrical axis of the 

furnace and the  mi dpoint (le ngth-wise) of  th e c apsules, whe re the  f urnace hot -spot is 

estimated to be a pproximately 8 mm  leng th. The run was quenched b y turning off pow er. 

Quench was isobaric a t a ra te of about 2000 K/ min. X -ray image of  the capsule was made 

after experiment and the  sinking distance of  sphere was determined (within an error of  ±20  

m) by superimposing pre- and post-experiment images (Misiti et al., 2006). The velocity of 

Pt spheres, derived from the sphere position vs. time, was used to measure the melt viscosity 

by means of the Stokes law: 

W
v
gr

9
2 2

Wg2
 (2) 

where  is the viscosity (in Pas), g is the acceleration due to gravity (9.8 m/s2), 

 is the density difference between melt and sphere (kg/m3), r is the sphere radius 
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(m), v is the terminal fall velocity of the sphere (m/s) and W is a correction factor which 

takes into account the effects of viscosity drag exerted on the settling sphere by the 

capsule walls and is given by the equation (Faxen, 1923): 

W = [1- 2.104 (rs/rc) + 2.09 (rs/rc)3 – 0.95 (rs/rc)5] (3) 

where rc is the inner radius of the capsule and rs is the radius of the sphere. 

Due to  th e sh ort dwell tim es a t the ta rget temperature, sinking o f the sp here 

before reaching the final temperature may significantly contribute to the whole falling 

distance. T o account f or movement of t he sp here during heating and co oling we 

calculated the effective run duration teffective for each experiment (Vetere et al., 2006). 

The a ctivation e nergy o f v iscous flow w as e stimated to b e 4 50 kJ/mol for 

shoshonite and 320 kJ/mol fo r latite a t T b etween 16 73 a nd 1523 K . The larg est 

uncertainty in our experiments is the effective run duration due to the short dwell at 

the e xperimental temperature (be tween 300 a nd 1800 se c). The error in distance 

measurements is about 1 0 
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m, d etermined mainly by th e reso lution of the X -ray 

photograph. A dditional errors in viscosity d etermination are related t o the sp here 

radius (1 - 5 
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m), to the experimental temperature (±10 K) and to the melt density. As 

an approximation we have used the density of the glass in the viscosity calculation 

and no t that of t he melt. This contributes a  sy stematic e rror to t he v iscosity d ata 

(±3%, Vetere et al., 2006); h owever, this error is negligible co mpared t o th at 

originating f rom run  duration (Table 2) . Another er ror may b e relat ed to  the 

shortening of  the capsule during compression. However, it has been demonstrated 

(Misiti et al., 2006) that the shortening occur only during compression (which is held 

at room temperature), so  the compression does not af fect the ini tial position of the 

sphere and, then, the m easurements of th e sinkin g d istance (f or more details se e 

Misiti et al., 2006). 
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4. Results 

Experimental conditions and results are reported in Tables 2 and 3. Experiments in the 

high viscosity regime have been performed at atmospheric pressure, temperature between 840 

K and 1040 K  and water contents up to 2.43 wt%; experiments in the low viscosity regime 

have been performed at atmospheric pressure and 0.5 MPa, temperatures between 1400 K and 

1870 K  and water contents up to 3.03 wt%. As for several other natural and synthetic melts 

(cf. Dingwell et al., 1996; Holtz et al., 1999; Whittington et al., 2000; Romano et al., 2001; 

Misiti et al., 2006), viscosity decreases by increasing both, temperature and water content, the 

decrease b eing mor e m arked a t low water contents (less than 0.5 wt%) and tempe ratures 

(Figs. 1 and 2). For example, by adding only 0.3 wt% of water to the latitic composition the 

viscosity de creases of 2 or ders of  ma gnitude for sa mples run a t sim ilar temperatures 

( T=20K; T= 950 -930K); b y adding about 3 wt% water to the melt, viscosity de crease 

remains within 2 or ders of magnitude (Table 2, Fig. 3). Interestingly, the effect of water on 

viscosity seems to be more efficient for the latitic composition than for the shoshonitic one; 

by adding about 3 wt% H2O to the latite we observe a viscosity decrease of about 2 orders of 

magnitude (i.e. T=  1423  K) whereas, a t the same e xperimental c onditions, viscosity of  the 

shoshonite decreases by onl y 1 order of  magnitude (Fig. 2) . Some e xperiments in the low  

viscosity regime ha ve b een duplicated a t same conditions of P-T-t-sphere ra dius) a nd the  

results agree within the reliability of the falling sphere method (cfr. Table 3. 

Notably, falling sphere experiments and concentric cylinder measurements performed at 

similar tempe ratures (1523 a nd 1522 K, respectively) on dr y sa mples but a t diff erent 

pressures (0.5 GPa  and a tmospheric pressure, respectively) p roduced comparable viscosity 
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values (log ≈2, Tables 2 and 3). We thus assume that the effect of pressure (between 1 a tm 

and 0.5 GPa) was smaller than accuracy of the measurements.  

4.3 The viscosity model  

The viscosity data set has been used to develop an empirical model predicting 

viscosity as a function of melt composition and temperature. The data set consists of 

58 nominally d ry experiments, 3 0 for l atite and 2 8 for shoshonite, and 34 h ydrous 

experiments, 19 for latite and 15 for shoshonite. 

The following  equation (Vetere e t al., 2007,  Davì et al., 2009) based on the VFT 

(Vogel–Fulcher–Tamman) approach was found to best reproduce the experimental data: 

where  is the viscosity in P a s, w is the amount of H 2O in wt% and T is the absolute 

temperature, a, b, c, d, and g are the fit parameters. Note that the equation is the same for both 

compositions, only fit parameters, listed in table 4, change. This e quation re produces the 

experimental data with a standard deviation (1  of 0.19 log units for latite and 0.15 log units 

for shoshonite. In order to create one single equation to predict viscosity of the whole range of 

compositions erupted at Campi Flegrei we have tested Equation (4) on the data obtained for a  

more e volved Campi F legrei composition (trachyte from Agnano Mon te Spina e ruption, 

Misiti et al., 2006) and calculated the r elated parameters (T able 4 ). Since Equation (4) 

predicts viscosity of trachytic melt with a root mean squared deviation of 0.23 log units with 

respect of the equation reported in Misiti et al. (2006), we can confidently use it to calculate 
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viscosity of more evolved trachytic compositions as well. Finally, we stress that Equation (4) 

can be used to predict viscosities below 1012 Pas.   

 

 

 

5. Discussion 

A comparison between experimental and predicted data is reported in figures 3. Based 

on Equation (4) the viscosity of shoshonite, latite and trachyte anhydrous melt at temperature 

relevant for magmatic processes (1393 K for shoshonite and latite, Mangiacapra et al., 2008 

and 1218 K for trachyte, Romano et al., 2003) is 103.32 Pas, 103.90 Pas and 106.89 Pas, 

respectively. Between the above mentioned temperatures melts with 3.0 wt% H2O have 

viscosities of 101.90, 101.51 and 103.43 Pas, respectively.  

 

5.1 Comparison with previous models  

Figures 3a-i show viscosity values for shoshonitic, latitic, and trachytic melts 

determined in this study and in Misiti at al. (2006) vs values predicted by Equation 4 (this 

study) and general empirical equations proposed in previous studies (Giordano et al., 2008; 

Hui and Zhang, 2007). In general, we notice that previous models (some are general models 

designed to predict viscosities as a function of melt composition and temperature whereas 

some others are specific models calibrated for a single composition) diverge from 

experimentally determined values. In particular, such a divergence is more pronounced for 

shoshonitic and trachytic compositions when using the Hui and Zhang (2007) model (Figs. 3b 

and 3i). The comparison with Giordano et al. (2008) and Hui and Zhang (2007) models shows 

a maximum deviation from the best fitting of 1.4 log unit and 0.94 log unit respectively for 

shoshonite and trachyte. As it can be noticed the model of Giordano at al. (2008) predict 
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higher viscosities than experimentally determined for shoshonite and latite composition (Figs. 

3a and 3d), while the trachyte fitting is quite good (Fig. 3f). On the other hand the Hui and 

Zhang (2007) model show the maximum discrepancies for shoshonites at both low and high 

viscosity values (Fig. 3b), while at low viscosity for trachyte compositions (Fig. 3i). 

 

5.2 The ascent rate of Campi Flegrei magmas 

Geophysical precursors to volcanic eruptions, such as volcano-tectonic e arthquakes, 

tremor and d eformation, a ll re flect magma mi gration be neath the volcano a s the ma gma 

develops an ascent path. A c ritical unknown that has limited the a ccuracy of eruption 

forecasting is the rate of magma rise before an explosive eruption: this parameter controls not 

only d egassing be haviour a nd flow  rhe ology, but also the ti mescale of  accompanying 

precursory unrest and pre-eruptive warning. In this frame, viscosity data can be very useful 

because through them it is possible to estimate flow regime and magma rising velocity from 

deep to shallow reservoirs. Thus, experimental viscosity data allow us to semi-quantitatively 

estimate the ascent velocity of shoshonitic, latitic and trachytic magmas relevant to the Campi 

Flegrei caldera as outlined b y Vetere e t al. (2007). Assumi ng, for lat ite, shoshonite and 

trachyte, that magma ascent is driven by buoyancy, the overpressure P at the depth at which 

these melts reside (Mangiacapra et al., 2008) may be estimated using the relation: 

ΔP = Δρgh (5) 

where Δρ is the difference between the density of the surrounding rock and the melt, g is 

the gravity, and h is the vertical length of the dike.  is 200 kg/m3 for both shoshonitic and 

latitic melts. This value is the difference b etween 2500 k g/m3, whic h is the seismically 

average de nsity of  the crustal rocks and the density of  the shoshonitic a nd latit ic melts 

estimated a t 1393 K and of the trachyte at 1218  K following Lange (1 997) and Oc hs and 

Lange (1999 ). We se lect 3.0 wt% as maximum wa ter c ontent b ecause our data are we ll 
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constrained up to 3.0 wt%. Using equation (5) and the above selected parameters, we obtained 

an overpressure of  98 MP a. These values allow us to make a semi-quantitative estimate the 

Reynolds number Re within the dyke. It is well known that a laminar flow regime occurs at 

Re<10, whe reas a tur bulent flow  re gime o ccurs Re>1000. Tr ansitional regimes a re 

characterized by 10<Re<1000. A critical value of the viscosity 
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c between these regimes can 

be estimated, if P, the width of the dyke w, and h are known, using the relation (Sparks et 

al., 2006):  

c=[(2 P w 3h Rec)]1/2 (6) 

where Rec is t he c ritical Re. Tur bulent flow  oc curs when < c. He re, we a dopt the 

following values: P = 98 MPa (Eq. (5)), 
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 = 2500 kg/m3, h= 5 km and w = 2 m. We chose 

these values according to Mangiacapra et al., (2008) and Zollo et al. (2008); we also select 10 

and 1000 as representative values of Rec. 

Taking int o account an initial temperature o f the ma gmas of 1393 K for latite and 

shoshonite (Mangiacapra et al., 2008) and 1218 K for trachyte (Romano et al., 2003) and a 

water c ontent of 3.0 wt  %  (M angiacapra e t al., 2008), a viscosit y of 51 and 32 Pa s for 

shoshonite and latite respectively, and of  2691 Pa s  for A gnano Mont e S pina is calculated 

using Eq. (4). This effective value is lower than those estimated using Eq. (6) at Rec= 1000 

and 10 and w= 2 m.  

From these data, we can conclude that the magma moved within the dike in a prevailing 

turbulent flow regime, at least between 9 and 4 km depth (Mangiacapra et al., 2008; Zollo et 

al., 2008; Vetere et al., 2011). To calculate the ascent speed u of such a magma we use the 

relation of Lister and Kerr (1991) for turbulent flows:  

u=7.7[w5/{ ( g )3}]1/7g  

by setting w=2 m,  = 200 kg/m3 and  (hydrous) of latite, shoshonite, and trachyte, 

respectively. By selecting u, the ascent time (h/u) for shoshonite magma between 9 and 4 km 
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of depth is in the order of 4.4 min; while for latite is 4.1 min and for Agnano Monte Spina is 

7.6 min.  

The ascent velocity determined for a 2 m wide dike is (a) the same comparing AMS and 

alkali basalt (Demouchy et al., 2006); (b) similar to that estimated for kimberlites (from 1 to 

40 m/s; Peslier et al., 2008). 

Our simple model (Eqs. (6) and (7)) does not consider the possible role of : 1) freezing 

processes at the walls, which can locally increase the viscosity (Wylie et al., 1999); 2) the 

variation of the dike geometry in depth (Giberti and Wilson, 1990); 3) possible vesiculation 

processes, which can further decrease the magma viscosity (Manga and Lowenberg, 2001). 

Therefore, our velocity estimates must be considered as representative of ―order of 

magnitude‖ rather than absolute values.  

 

5. Conclusion 

We determined the viscosity of dry and hydrous latite and shoshonite compositions 

representative of Campi Flegrei relatively primitive magmas at temperatures relevant to 

magmatic processes. We provide a modified VFT equation to calculate viscosity as a function 

of temperature and water content in the values range as investigated in this work; we have 

demonstrated that the same equation can be used to calculate viscosity of compositions 

representative of more evolved magmas as well (i.e. trachyte). 

Viscosity data as determined from the equation provided in this study can be used to 

constrain the ascent velocity within dikes and used for hazard assessment at the Campi Flegrei 

area. Using petrological data and volcanological information, we estimate the time scale for 

the ascent of magmas from 9 km to 4 km depth (where deep and shallow reservoirs, 

respectively, are located) in the order of few minutes.  
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Fig. 1. Structural sketch of the Campi Flegrei caldera (after Orsi et al., 2004) showing the 

location of shoshonite (Minopoli) and latite (Fondo Riccio) vents. 

 

Fig. 2. Low and high temperature viscosity data for dry and hydrous a) shoshonitic and b) 

latitic compositions. Lines are predictions by Eq. (4). Low temperature data are measured at 

atmospheric pressure. High temperature data for shoshonite and latite were obtained at 

atmospheric pressure and at 0.5 GPa. Gray symbols are data from piston cylinder.  

 

Fig. 3. Comparison between experimental viscosity data and the predictions of computation 

models. a) shoshonite, this work model; b) shoshonite, Hui and Zhang (2007); c) shoshonite, 

Giordano et al. (2008); d) latite, this work model; e) latite, Hui and Zhang (2007); f) latite, 

Giordano et al. (2008) g, h, i) trachyte vs Giordano, Hui and Zhang and this work model 

respectively melts. 

 

Fig. 4. Comparison among ascent rate estimates for trachyte (Agnano Monte Spina), latite 

(Fondo Riccio), shoshonite (Minopoli), and other types of magma. Overall, ascent rates for 

kimberlites are higher than those for alkali basalts and other magma types and are of the same 

order of magnitude when compared with our compositions. Kimberlite: H diffusivity in 

olivine combined with the equilibration depth of xenoliths in kimberlites (Peslier et al., 2008); 

Stromboli basalt: (Misiti et al., 2009); FR, MIN and AMS: this work; Alkali Basalt: H in 

olivine from garnet–peridotite xenolith in alkali basalts (Demouchy et al., 2006); Andesite 

Dacite: Mt St Helens: groundmass crystallization, hornblende rims, mass-eruption rates, 

seismicity movement (Rutherford and Gardner, 2000). 
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Table 1. Electron microprobe analyses and water content of starting materials used for viscosity 
measurements; FR refers to latitic composition from Fondo Riccio, MIN refers to shoshonitic 
composition from Minopoli. After experiments water contents were measured on selected runs 
only (those carried out at the highest experimental temperature).  

 FRd_1 FRh_2 FRh_4 MINad_1 MINah_2 MINah_1 

SiO2 (wt%) 56.08 53.13 53.30 52.86 51.07 49.92 

TiO2 0.89 0.86 0.84 0.84 0.85 0.83 

Al2O3 18.83 17.29 17.91 16.27 15.97 15.29 

FeOtot
 6.57 6.22 6.63 7.00 5.51 6.98 

MnO 0.13 0.16 0.17 0.13 0.12 0.09 

MgO 2.48 2.44 2.35 5.66 5.63 5.36 

CaO 5.87 5.38 5.67 10.29 10.01 9.63 

Na2O 4.21 4.08 4.06 2.28 2.26 2.12 

K2O 4.67 4.74 4.49 3.79 3.77 3.62 

P2O5 0.64 0.63 0.62 0.42 0.43 0.44 

Total 100.32 94.94 96.04 99.54 95.61 94.29 

H2O (KFT)be n.d. 2.84 3.28 n.d. 2.35 3.30 

H2O (FTIR)be  n.d. 3.11 3.40 n.d. 2.58 3.85 

H2O (KFT)ae n.d. 2.102) 3.243) n.d. 2.125) 3.106) 

H2O (FTIR)ae 0.221) 3.652) 3.393) 0.194) 2.425) 3.466) 

 
H2O contents were measured by Karl Fischer Titration (KFT) and Fourier Transform Infra-Red 
(FTIR) at University of Hannover; FTIR data are MIR for runs 1) and 4), NIR for all other runs.   
be: before experiments; ae: after experiments: 1) FRd_1_1; 2) FRh_2_3; 3) FRh_4_3; 4) 

MINad_1_1; 5) MINah_2_3; 6) MINah_1_3; see Table 3 for run labels. 
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Table 2 . Viscosity d ata of la titic (FR) a nd s hoshonitic (MIN) co mpositions o btained b y means o f co ncentric 
cylinder and micropenetration methods. The error in the viscosity measurements is ± 0.05 log unit. 

  FR MIN 
T (K) H2O (wt%) log  (Pa s) log  (Pa s) 

High temperature viscosities, concentric cylinder method 
1866 0.01 1.02 0.44 
1842 0.01 1.08  
1818 0.01 1.18 0.52 
1792 0.01 1.29 0.61 
1770 0.01 1.39 0.70 
1745 0.01 1.50 0.89 
1718 0.01 1.61 0.99 
1695 0.01 1.72 1.07 
1669 0.01 1.85 1.19 
1645 0.01 1.97 1.31 
1621 0.01 2.10 1.43 
1597 0.01 2.24 1.56 
1572 0.01 2.37 1.69 
1548 0.01 2.52 1.84 
1522 0.01 2.66 1.98 
1497 0.01 2.83 2.14 
1473 0.01 2.99 2.31 
1449 0.01 3.16 2.49 
1425 0.01 3.35 2.68 
1399 0.01  2.88 

Low temperature viscosities, micropenetration method 
1044 0.01 10.10  
1027 0.01 10.43 9.00 
1022 0.01 10.52  
1014 0.01 10.62  
1008 0.01 10.73 9.72 
991 0.01  9.95 
987 0.01 11.05  
971 0.01 11.32  
957 0.01  11.20 
955 0.01  11.30 
952 0.30 9.40  
943 0.30 9.60  
935 0.30 9.41  
931 0.30 10.10  
929 0.30 10.16  
928 0.50 9.66  
918 0.50  8.00 
910 0.50 10.50  
901 0.50 10.80  
886 0.50  10.12 
879 0.50  10.77 
915 0.80 10.03  
910 0.80 10.25  
907 0.80 10.35  
882 1.00  9.08 
909 1.20 10.10  
847 2.43  9.00 
845 2.43  9.39 
842 2.43  9.68 
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Table 3. Experimental conditions and viscosity values obtained by means of falling sphere method. 

Sample Run number H2O 
(wt%) 

T 
(K) 

Sphere radiusa) 
(µm) 

tef
b) 

(s) 
dc) 

(mm) 
Log η 
(Pa∙s) 

MINad_1_1 PC-510 0.01 1523 120 1800±19 5.04 2.32±0.15 
MINad_1_2 PC-505 0.01 1573 70 1800±19 4.69 1.88±0.15 
MINad_1_3 PC-506 0.01 1623 90 600±20 5.16 1.58±0.15 
MINad_1_4 PC-508 0.01 1673 65 300±21 6.01 0.93±0.16 
FRd_1_1 PC-510 0.01 1523 215 1800±24 5.49 2.79±0.15 
FRd_1_2 PC-505 0.01 1573 145 1800±25 6.10 2.40±0.15 
FRd_1_3 PC-506 0.01 1623 180 600±26 4.62 2.23±0.15 
FRd_1_4 PC-508 0.01 1673 160 300±27 5.14 1.78±0.17 
        
MINah_2_1 PC-528 2.35 1423 105 900±17 4.56 1.72±0.15 
MINah_2_2 PC-514 2.35 1473 115 300±18 6.37 1.40±0.16 
MINah_2_5 PC-540 2.35 1473 115 300±18 4.68 1.77±0.16 
MINah_2_3 PC-515 2.35 1523 75 300±19 6.36 1.03±0.16 
MINah_2_4 PC-530 2.35 1523 75 300±19 6.45 0.72±0.16 
FRh_2_1 PC-528 2.84 1423 60 900±21 4.75 1.14±0.15 
FRh_2_2 PC-514 2.84 1473 75 300±22 5.41 1.10±0.16 
FRh_2_5 PC-540 2.84 1473 75 300±22 6.83 1.00±0.16 
FRh_2_3 PC-515 2.84 1523 50 300±24 6.77 0.65±0.16 
FRh_2_4 PC-530 2.84 1523 50 300±24 6.85 0.35±0.16 
        
MINah_1_1 PC-503 3.30 1423 105 300±17 3.89 1.53±0.16 
MINah_1_2 PC-516 3.30 1473 90 300±17 5.52 1.25±0.16 
MINah_1_3 PC-517 3.30 1523 75 300±19 6.96 0.99±0.16 
MINah_1_4 PC-529 3.30 1523 75 300±19 6.88 0.69±0.16 
FRh_4_1 PC-503 3.28 1423 90 300±21 5.21 1.27±0.16 
FRh_4_2 PC-516 3.28 1473 55 300±22 7.14 0.71±0.16 
FRh_4_3 PC-517 3.28 1523 50 300±24 6.32 0.68±0.16 
FRh_4_4 PC-529 3.28 1523 50 300±24 6.12 0.39±0.16 
 
H2O (wt%) refers to the initial water content. The error in the temperature measurement is around 10 K. 
a) The radii of hand-picked spheres were measured using a microscope calibrated with a micrometer section 
(see Vetere et al., 2006). The error in the measurements is of comprise between 1 and 5 m.  
b) Effective run duration. See text. 
c) Falling distance of the sphere. The error in the measurement of falling distance is about 10 m (see text). 
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Table 4. VTF parameters for viscosity equations. Numbers in parenthesis are standard 
deviation. 
Parameters Latite  

FR 

Shoshonite 

MIN  

Trachyte 

AMS  

a 4.9918 (± 0.3129) 5.5658 (±0.332) 6.64 (±0.7357) 
b 5412.9881 (±368.5425) 7812.0455 (±596.324) 8464.73 (±1332.511) 
c 552.689 (±15.9128) 321.7306 (± 29.5606) 186.36 (±56.9934) 
d 2799.217 (±263.4522) 874.6774 (± 46.6082) 7220.89 (± 961.4282) 
e 303.4056 (±75.3107) 770.0389 (± 11.3649) -129.20 (±149.674) 
g -5356.4401 (±473.0276) -2289.7318 (±91.9453) -429.34 (27.556) 
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Figure 1
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Fig. 2a 
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Fig. 2b 
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Figure 3a
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Figure 3b
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Figure 3c
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Figure 3d
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Figure 3e
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Figure 3h
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Figure 3i
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Figure 4
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Highlights 

1) We experimentally measured viscosities of shoshonitic and latitic melts relevant to the 

Campi Flegrei caldera magmas. 

2) The micropenetration, concentric cylinder technique and falling sphere method were 

adopted to determine viscosity of nominally anhydrous and hydrous melts.  

3) The combination of experimental data allowed us create a general model of viscosity using 

the modified VFT equation.  

4) The proposed model has been applied to Campi Flegrei products. 

5) Viscosity data have been used to constrain the ascent velocity of melts within dikes. 

 
 




