197 research outputs found

    The amyloid β peptide Aβ (25–35) induces apoptosis independent of p53

    Get PDF
    AbstractApoptosis of neuronal cells apparently plays a role in Alzheimer’s disease (AD). The amyloid beta (Aβ) peptide derived from β-amyloid precursor protein is found in AD brain in vivo and can induce apoptosis in vitro. While p53 accumulates in cells of AD brain, it is not known if p53 plays an active role in Aβ-induced apoptosis. We show here that inactivation of p53 in two experimental cell lines, either by expression of the papillomavirus E6 protein or by a shift to restrictive temperature, does not affect apoptosis induction by Aβ (25–35), indicating that Aβ induces apoptosis in a p53-independent manner

    CD43-independent augmentation of mouse T-cell function by glycoprotein cleaving enzymes

    Full text link
    Previous work has shown that the function of mouse CD4 + T cells can be augmented by an enzyme, O -sialoglycoprotein endopeptidase (OSGE), which cleaves surface CD43, suggesting the idea that the high levels of glycosylated CD43 found on T cells from aged mice may contribute to immune senescence. New results now show that OSGE improves T-cell function even in mice lacking CD43, showing that other glycoproteins must contribute to the OSGE effect on function. Evaluation of other enzymes found two whose ability to stimulate CD4 activation was higher in aged than in young T cells. One of these, PNGase F, is a glycosidase specific for N-linked glycans, and the other, ST-Siase(2,3) from Salmonella typhimurium , is specific for α2,3-linked terminal sialic acid residues. Parallel lectin-binding experiments showed that removal of α2,3-linked sialic acid residues vulnerable to PNGase F and ST-Siase(2,3) was also greater in old than in young T cells. The preferential ability of PNGase F and ST-Siase(2,3) to improve the function of T cells from aged mice may involve cleavage of glycoproteins containing α2,3-linked sialic acid residues on N-linked or O-linked glycans or both.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75621/1/j.1365-2567.2006.02419.x.pd

    What are the effects of maternal and pre-adult environments on ageing in humans, and are there lessons from animal models?

    Get PDF
    An open issue in research on ageing is the extent to which responses to the environment during development can influence variability in life span in animals, and the health profile of the elderly in human populations. Both affluence and adversity in human societies have profound impacts on survivorship curves, and some of this effect may be traceable to effects in utero or in infancy. The Barker Hypothesis that links caloric restriction in very early life to disruptions of glucose-insulin metabolism in later life has attracted much attention, as well as some controversy, in medical circles. It is only rarely considered by evolutionary biologists working on phenotypic plasticity, or by biogerontologists studying model organisms such as C. elegans or Drosophila. One crucial mechanism by which animals can respond in an adaptive manner to adverse conditions, for example in nutrition or infection, during development is phenotypic plasticity. Here we begin with a discussion of adaptive plasticity in animals before asking what such phenomena may reveal of relevance to rates of ageing in animals, and in humans. We survey the evidence for effects on adult ageing of environmental conditions during development across mammalian and invertebrate model organisms, and ask whether evolutionary conserved mechanisms might be involved. We conclude that the Barker Hypothesis is poorly supported and argue that more work in human populations should be integrated with multi-disciplinary studies of ageing-related phenomena in experimental populations of different model species that are subjected to nutritional challenges or infections during pre-adult development

    Immunosenescence and Cytomegalovirus: where do we stand after a decade?

    Get PDF
    AbstractSince Looney at al. published their seminal paper a decade ago it has become clear that many of the differences in T cell immunological parameters observed between young and old people are related to the age-associated increasing prevalence of infection with the persistent beta-herpesvirus HHV-5 (Cytomegalovirus). Ten years later, studies suggest that hallmark age-associated changes in peripheral blood T cell subset distribution may not occur at all in people who are not infected with this virus. Whether the observed changes are actually caused by CMV is an open question, but very similar, rapid changes observed in uninfected patients receiving CMV-infected kidney grafts are consistent with a causative role. This meeting intensively discussed these and other questions related to the impact of CMV on human immune status and its relevance for immune function in later life.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Wnt4 and LAP2alpha as pacemakers of Thymic Epithelial Senescence

    Get PDF
    Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2α expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2α and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2α over-expression provoked a surge of PPARγ expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARγ. Murine embryonic thymic lobes have also been transfected with LAP2α- or Wnt4-encoding lentiviral vectors. As expected LAP2α over-expression increased, while additional Wnt4 secretion suppressed PPARγ expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2α expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes

    Association between fat-soluble vitamins and self-reported health status: A cross-sectional analysis of the MARK-AGE cohort

    Get PDF
    Self-rated health (SRH) is associated with higher risk of death. Since low plasma levels of fat-soluble vitamins are related to mortality, we aimed to assess whether plasma concentrations of vitamins A, D and E were associated with SRH in the MARK-AGE study. We included 3158 participants (52% female) aged between 35-75 years. Cross-sectional data were collected via questionnaires. An enzyme immunoassay quantified 25-hydroxyvitamin D and HPLC determined α-tocopherol and retinol plasma concentrations. The median 25-hydroxyvitamin D and retinol concentrations differed significantly (P<0.001) between SRH categories, and were lower in the combined fair/poor category versus the excellent, very good, good categories (25-hydroxvitamin D: 40.8 vs. 51.9, 49.3, 46.7 nmol/l, respectively; retinol: 1.67 vs. 1.75, 1.74, 1.70 μmol/l, respectively). Both vitamin D and retinol status were independently associated with fair/poor SRH in multiple regression analyses: adjusted ORs (95% CI) for the vitamin D insufficiency, deficiency, severe deficiency categories were 1.33 (1.06-1.68), 1.50 (1.17-1.93), and 1.83 (1.34-2.50) respectively; P=0.015, P=0.001, P<0.001, and for the second/third/fourth retinol quartiles: 1.44 (1.18-1.75), 1.57 (1.28-1.93), 1.49 (1.20-1.84); all P<0.001. No significant associations were reported for α-tocopherol quartiles. Lower vitamin A and D status emerged as independent markers for fair/poor SRH. Further insights into the long-term implications of these modifiable nutrients on health status are warranted

    Bacterial DNAemia in Older Participants and Nonagenarian Offspring and Association With Redox Biomarkers: Results From MARK-AGE Study

    Get PDF
    Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI >= 2 compared with those with CCI <= 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants

    Two Functionally Distinct Isoforms of TL1A (TNFSF15) Generated by Differential Ectodomain Shedding

    Get PDF
    Tumor necrosis factor–like cytokine 1A (TL1A) is expressed in endothelial cells and contributes to T-cell activation, via an extracellular fragment TL1AL72-L251, generated by ectodomain shedding. Fragments of TL1A, referred to as vascular endothelial growth inhibitor, were found to induce growth arrest and apoptosis in endothelial cells; however, the underlying mechanisms remained obscure. Here, we show that full-length TL1A is the major detectable gene product in both human umbilical vein endothelial cells and circulating endothelial progenitor cells. TL1A expression was significantly enhanced in senescent circulating endothelial progenitor cells, and knockdown of TL1A partially reverted senescence. TL1A overexpression induced premature senescence in both circulating endothelial progenitor cells and human umbilical vein endothelial cells. We also identified a novel extracellular fragment of TL1A, TL1AV84-L251, resulting from differential ectodomain shedding, which induced growth arrest and apoptosis in human umbilical vein endothelial cells. These findings suggest that TL1A is involved in the regulation of endothelial cell senescence, via a novel fragment produced by differential ectodomain shedding

    Microbiome in blood samples from the general population recruited in the MARK-AGE project: a pilot study

    Get PDF
    The presence of circulating microbiome in blood has been reported in both physiological and pathological conditions, although its origins, identities and function remain to be elucidated. This study aimed to investigate the presence of blood microbiome by quantitative real-time PCRs targeting the 16S rRNA gene. To our knowledge, this is the first study in which the circulating microbiome has been analyzed in such a large sample of individuals since the study was carried out on 1285 Randomly recruited Age-Stratified Individuals from the General population (RASIG). The samples came from several different European countries recruited within the EU Project MARK-AGE in which a series of clinical biochemical parameters were determined. The results obtained reveal an association between microbial DNA copy number and geographic origin. By contrast, no gender and age-related difference emerged, thus demonstrating the role of the environment in influencing the above levels independent of age and gender at least until the age of 75. In addition, a significant positive association was found with Free Fatty Acids (FFA) levels, leukocyte count, insulin, and glucose levels. Since these factors play an essential role in both health and disease conditions, their association with the extent of the blood microbiome leads us to consider the blood microbiome as a potential biomarker of human health.Molecular Epidemiolog
    corecore