8,290 research outputs found

    InAs/InP single quantum wire formation and emission at 1.5 microns

    Get PDF
    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 microns. Additional sharp features are related to monolayer fluctuations of the two dimensional InAs layer present during the early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter

    Improved constraints on primordial non-Gaussianity for the Wilkinson Microwave Anisotropy Probe 5-yr data

    Get PDF
    We present new constraints on the non-linear coupling parameter fnl with the Wilkinson Microwave Anisotropy Probe (WMAP) data. We use an updated method based on the spherical Mexican hat wavelet (SMHW) which provides improved constraints on the fnl parameter. This paper is a continuation of a previous work by Curto et al. where several third order statistics based on the SMHW were considered. In this paper, we use all the possible third order statistics computed from the wavelet coefficient maps evaluated at 12 angular scales. The scales are logarithmically distributed from 6.9 arcmin to 500 arcmin. Our analysis indicates that fnl is constrained to -18 < fnl < +80 at 95% confidence level (CL) for the combined V+W WMAP map. This value has been corrected by the presence of undetected point sources, which adds a positive contribution of Delta_fnl = 6 +- 5. Our result excludes at ~99% CL the best-fitting value fnl=87 reported by Yadav & Wandelt. We have also constrained fnl for the Q, V and W frequency bands separately, finding compatibility with zero at 95 % CL for the Q and V bands but not for the W band. We have performed some further tests to understand the cause of this deviation which indicate that systematics associated to the W radiometers could be responsible for this result. Finally we have performed a Galactic North-South analysis for fnl. We have not found any asymmetry, i.e. the best-fitting fnl for the northern pixels is compatible with the best-fitting fnl for the southern pixels.Comment: 6 pages, 4 figures, 4 tables. Accepted for publication in Ap

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com

    Multi-resolution internal template cleaning: An application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data

    Get PDF
    Cosmic microwave background (CMB) radiation data obtained by different experiments contain, besides the desired signal, a superposition of microwave sky contributions. We present a fast and robust method, using a wavelet decomposition on the sphere, to recover the CMB signal from microwave maps. An application to \textit{WMAP} polarization data is presented, showing its good performance particularly in very polluted regions of the sky. The applied wavelet has the advantages of requiring little computational time in its calculations, being adapted to the \textit{HEALPix} pixelization scheme, and offering the possibility of multi-resolution analysis. The decomposition is implemented as part of a fully internal template fitting method, minimizing the variance of the resulting map at each scale. Using a χ2\chi^2 characterization of the noise, we find that the residuals of the cleaned maps are compatible with those expected from the instrumental noise. The maps are also comparable to those obtained from the \textit{WMAP} team, but in our case we do not make use of external data sets. In addition, at low resolution, our cleaned maps present a lower level of noise. The E-mode power spectrum CEEC_{\ell}^{EE} is computed at high and low resolution; and a cross power spectrum CTEC_{\ell}^{TE} is also calculated from the foreground reduced maps of temperature given by \textit{WMAP} and our cleaned maps of polarization at high resolution. These spectra are consistent with the power spectra supplied by the \textit{WMAP} team. We detect the E-mode acoustic peak at 400\ell \sim 400, as predicted by the standard ΛCDM\Lambda CDM model. The B-mode power spectrum CBBC_{\ell}^{BB} is compatible with zero.Comment: 8 pages, 6 figures. Some changes have been done from the original manuscript. This paper is accepted by MNRA

    On the regularity of the covariance matrix of a discretized scalar field on the sphere

    Full text link
    We present a comprehensive study of the regularity of the covariance matrix of a discretized field on the sphere. In a particular situation, the rank of the matrix depends on the number of pixels, the number of spherical harmonics, the symmetries of the pixelization scheme and the presence of a mask. Taking into account the above mentioned components, we provide analytical expressions that constrain the rank of the matrix. They are obtained by expanding the determinant of the covariance matrix as a sum of determinants of matrices made up of spherical harmonics. We investigate these constraints for five different pixelizations that have been used in the context of Cosmic Microwave Background (CMB) data analysis: Cube, Icosahedron, Igloo, GLESP and HEALPix, finding that, at least in the considered cases, the HEALPix pixelization tends to provide a covariance matrix with a rank closer to the maximum expected theoretical value than the other pixelizations. The effect of the propagation of numerical errors in the regularity of the covariance matrix is also studied for different computational precisions, as well as the effect of adding a certain level of noise in order to regularize the matrix. In addition, we investigate the application of the previous results to a particular example that requires the inversion of the covariance matrix: the estimation of the CMB temperature power spectrum through the Quadratic Maximum Likelihood algorithm. Finally, some general considerations in order to achieve a regular covariance matrix are also presented.Comment: 36 pages, 12 figures; minor changes in the text, matches published versio

    Exploring two-spin internal linear combinations for the recovery of the CMB polarization

    Get PDF
    We present a methodology to recover cosmic microwave background (CMB) polarization in which the quantity P=Q+iUP = Q+ iU is linearly combined at different frequencies using complex coefficients. This is the most general linear combination of the QQ and UU Stokes parameters which preserves the physical coherence of the residual contribution on the CMB estimation. The approach is applied to the internal linear combination (ILC) and the internal template fitting (ITF) methodologies. The variance of PP of the resulting map is minimized to compute the coefficients of the linear combination. One of the key aspects of this procedure is that it serves to account for a global frequency-dependent shift of the polarization phase. Although in the standard case, in which no global E-B transference depending on frequency is expected in the foreground components, minimizing P2\left\langle |P|^2\right\rangle is similar to minimizing Q2\left\langle Q^2\right\rangle and U2\left\langle U^2\right\rangle separately (as previous methodologies proceed), multiplying QQ and UU by different coefficients induces arbitrary changes in the polarization angle and it does not preserve the coherence between the spinorial components. The approach is tested on simulations, obtaining a similar residual level with respect to the one obtained with other implementations of the ILC, and perceiving the polarization rotation of a toy model with the frequency dependence of the Faraday rotation.Comment: 14 pages, 8 figures, 2 tables. Accepted for publication in MNRA

    Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire

    Get PDF
    We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidences of metallic liquid condensation at low temperatures. Firstly, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Secondly, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at nc1×105n_c\sim1\times10^5 cm1^{-1} and Tc35T_c\sim35 K, respectively.Comment: 4 pages, 5 figure

    Non-Gaussianity analysis on local morphological measures of WMAP data

    Get PDF
    The decomposition of a signal on the sphere with the steerable wavelet constructed from the second Gaussian derivative gives access to the orientation, signed-intensity, and elongation of the signal's local features. In the present work, the non-Gaussianity of the WMAP temperature data of the cosmic microwave background (CMB) is analyzed in terms of the first four moments of the statistically isotropic random fields associated with these local morphological measures, at wavelet scales corresponding to angular sizes between 27.5 arcminutes and 30 degrees on the celestial sphere. While no detection is made neither in the orientation analysis nor in the elongation analysis, a strong detection is made in the excess kurtosis of the signed-intensity of the WMAP data. The non-Gaussianity is observed with a significance level below 0.5% at a wavelet scale corresponding to an angular size around 10 degrees, and confirmed at neighbour scales. This supports a previous detection of an excess of kurtosis in the wavelet coefficient of the WMAP data with the axisymmetric Mexican hat wavelet (Vielva et al. 2004). Instrumental noise and foreground emissions are not likely to be at the origin of the excess of kurtosis. Large-scale modulations of the CMB related to some unknown systematics are rejected as possible origins of the detection. The observed non-Gaussianity may therefore probably be imputed to the CMB itself, thereby questioning the basic inflationary scenario upon which the present concordance cosmological model relies. Taking the CMB temperature angular power spectrum of the concordance cosmological model at face value, further analysis also suggests that this non-Gaussianity is not confined to the directions on the celestial sphere with an anomalous signed-intensity.Comment: 10 pages, 3 figures. Version 2 includes minor changes to match version accepted for publication in MNRA

    Searching for a dipole modulation in the large-scale structure of the Universe

    Get PDF
    Several statistical anomalies in the CMB temperature anisotropies seem to defy the assumption of a homogeneous and isotropic universe. In particular, a dipole modulation has been detected both in WMAP and Planck data. We adapt the methodology proposed by Eriksen et al. (2007) on CMB data to galaxy surveys, tracing the large-scale structure. We analyse the NRAO VLA Sky Survey (NVSS) data at a resolution of ~2 degrees for three different flux thresholds: 2.5, 5.0 and 10.0 mJy respectively. No evidence of a dipole modulation is found. This result suggests that the origin of the dipole asymmetry found in the CMB cannot be assigned to secondary anisotropies produced at redshifts around z = 1. However, it could still have been generated at redshifts higher or lower, such as the integrated Sachs-Wolfe effect produced by the local structures. Other all-sky surveys, like the infrared WISE catalogue, could help to explore with a high sensitivity a redshift interval closer than the one probed with NVSS.Comment: 6 pages, 2 figures. Some minor changes have been done from the original manuscript. This paper is accepted by MNRA
    corecore