17,139 research outputs found

    Health Risks, Past Usage, and Intention to Use Weight Loss Products in Normal Weight Women with High and Low Body Dysphoria

    Get PDF
    Objective: There are many health risks involved with the use of weight loss products by normal weight women. The mass media may compound this problem through the promotion of weight loss products and a thin body size. This study tested women\u27s perceptions of different weight loss product ads to determine if body dysphoria (i.e., an over concern with body size and shape in normal weight people) was associated with risk beliefs, past behaviors, and intention toward using weight loss products. Method: Normal weight women (age range = 18-41 yr), who were classified as either high (n=45) or low (n=43) on a measure of body dysphoria, rated different weight loss products according to their perception of health risks, past behavior, and their intention to consume the products. These products were a dietary fat substitute (olestra), a prescription obesity medication (sibutramine), and an over-the-counter appetite suppressant (phenylpropanolamine). Results: High body dysphoric women reported higher intentions to use the products as well as increased prior use of two of the three weight loss products. High body dysphoric women did not believe that these weight loss products were harmless. They recognized potential health risks associated with using such products, but nonetheless, expressed intention to use these weight loss products at a higher frequency. Also, several variables related to body image were found to effectively discriminate normal weight women at risk for abusing weight loss products. Discussion: This study found that women who do not need to lose weight but have significant body image concerns were willing to use potentially harmful weight loss products despite the knowledge that such products might pose significant health risks. Techniques utilized by advertising regulatory agencies such as warning labels did not have a strong deterrent effect for stated intentions to use the products. Implications of these findings for public health policy issues were discussed

    Interferometers as Probes of Planckian Quantum Geometry

    Full text link
    A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tPt_P. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wavefunctions in two dimensions displays a new kind of directionally-coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wavefunctions on a 2D spacelike surface with the entropy density of a black hole event horizon of the same area. In a region of size LL, the effect resembles spatially and directionally coherent random transverse shear deformations on timescale L/c\approx L/c with typical amplitude ctPL\approx \sqrt{ct_PL}. This quantum-geometrical "holographic noise" in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beamsplitter for durations up to the light crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly co-located Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.Comment: 23 pages, 6 figures, Latex. To appear in Physical Review

    Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    Get PDF
    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots

    Graphical explanation in an expert system for Space Station Freedom rack integration

    Get PDF
    The rationale and methodology used to incorporate graphics into explanations provided by an expert system for Space Station Freedom rack integration is examined. The rack integration task is typical of a class of constraint satisfaction problems for large programs where expertise from several areas is required. Graphically oriented approaches are used to explain the conclusions made by the system, the knowledge base content, and even at more abstract levels the control strategies employed by the system. The implemented architecture combines hypermedia and inference engine capabilities. The advantages of this architecture include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. The graphical techniques employed range from simple statis presentation of schematics to dynamic creation of a series of pictures presented motion picture style. User models control the type, amount, and order of information presented

    Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes.

    Get PDF
    Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15-2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level
    corecore