107 research outputs found
NIF Projects Controls and Information Systems Software Quality Assurance Plan
Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals
Quantum Gravity Effects in Black Holes at the LHC
We study possible back-reaction and quantum gravity effects in the
evaporation of black holes which could be produced at the LHC through a
modification of the Hawking emission. The corrections are phenomenologically
taken into account by employing a modified relation between the black hole mass
and temperature. The usual assumption that black holes explode around TeV
is also released, and the evaporation process is extended to (possibly much)
smaller final masses. We show that these effects could be observable for black
holes produced with a relatively large mass and should therefore be taken into
account when simulating micro-black hole events for the experiments planned at
the LHC.Comment: 14 pages, 8 figures, extended version of hep-ph/0601243 with new
analysis of final products, final version accepted for publication in J.
Phys.
Cosmological constraints on R-parity violation from neutrino decay
If the neutrino mass is non-zero, as hinted by several experiments, then
R-parity-violating supersymmetric Yukawa couplings can drive a heavy neutrino
decay into lighter states. The heavy neutrino may either decay radiatively into
a lighter neutrino, or it may decay into three light neutrinos through a
Z-mediated penguin. For a given mass of the decaying neutrino, we calculate its
lifetime for the various modes, each mode requiring certain pairs of
R-parity-violating couplings be non-zero. We then check whether the calculated
lifetimes fall in zones allowed or excluded by cosmological requirements. For
the latter case, we derive stringent new constraints on the corresponding
products of R-parity-violating couplings for given values of the decaying
neutrino mass.Comment: 13 pages, Latex, uses axodraw.sty; version to appear in Physical
Review
Leptonic CP Violation in Supersymmetric Standard Model
We point out the possibility of spontaneous and hard CP-violation in the
scalar potential of R-parity broken supersymmetric Standard Model. The
existence of spontaneous CP-violation depends crucially on the R-parity
breaking terms in the superpotential and, in addition, on the choice of the
soft supersymmetry breaking terms. Unlike in theories with R-parity
conservation, it is natural, in the context of the present model, for the
sneutrinos to acquire (complex) vacuum expectation values. In the context of
this model we examine here the global implications, like the strength of the
CP-violating interactions and the neutrino masses.Comment: REVTEX, 15 page
Recommended from our members
Automatic Alignment of the Advanced Radiographic Capability for the National Ignition Facility
On the Spontaneous CP Breaking at Finite Temperature in a Nonminimal Supersymmetric Standard Model
We study the spontaneous CP breaking at finite temperature in the Higgs
sector in the Minimal Supersymmetric Standard Model with a gauge singlet. We
consider the contribution of the standard model particles and that of stops,
charginos, neutralinos, charged and neutral Higgs boson to the one-loop
effective potential. Plasma effects for all bosons are also included. Assuming
CP conservation at zero temperature, so that experimental constraints coming
from, {\it e.g.}, the electric dipole moment of the neutron are avoided, and
the electroweak phase transition to be of the first order and proceeding via
bubble nucleation, we show that spontaneous CP breaking cannot occur inside the
bubble mainly due to large effects coming from the Higgs sector. However,
spontaneous CP breaking can be present in the region of interest for the
generation of the baryon asymmetry, namely inside the bubble wall. The
important presence of very tiny explicit CP violating phases is also commented.Comment: 28 pages, 4 figures available upon request, DFPD 94/TH/38 and SISSA
94/81-A preprint
Recycling universe
If the effective cosmological constant is non-zero, our observable universe
may enter a stage of exponential expansion. In such case, regions of it may
tunnel back to the false vacuum of an inflaton scalar field, and inflation with
a high expansion rate may resume in those regions. An ``ideal'' eternal
observer would then witness an infinite succession of cycles from false vacuum
to true, and back. Within each cycle, the entire history of a hot universe
would be replayed. If there were several minima of the inflaton potential, our
ideal observer would visit each one of these minima with a frequency which
depends on the shape of the potential. We generalize the formalism of
stochastic inflation to analyze the global structure of the universe when this
`recycling' process is taken into account.Comment: 43 pages, 10 figure
How generic is cosmic string formation in SUSY GUTs
We study cosmic string formation within supersymmetric grand unified
theories. We consider gauge groups having a rank between 4 and 8. We examine
all possible spontaneous symmetry breaking patterns from the GUT down to the
standard model gauge group. Assuming standard hybrid inflation, we select all
the models which can solve the GUT monopole problem, lead to baryogenesis after
inflation and are consistent with proton lifetime measurements. We conclude
that in all acceptable spontaneous symmetry breaking schemes, cosmic string
formation is unavoidable. The strings which form at the end of inflation have a
mass which is proportional to the inflationary scale. Sometimes, a second
network of strings form at a lower scale. Models based on gauge groups which
have rank greater than 6 can lead to more than one inflationary era; they all
end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR
- …