7,913 research outputs found

    Addressing the challenges of modeling the scattering from bottlebrush polymers in solution

    Get PDF
    Small‐angle scattering measurements of complex macromolecules in solution are used to establish relationships between chemical structure and conformational properties. Interpretation of the scattering data requires an inverse approach where a model is chosen and the simulated scattering intensity from that model is iterated to match the experimental scattering intensity. This raises challenges in the case where the model is an imperfect approximation of the underlying structure, or where there are significant correlations between model parameters. We examine three bottlebrush polymers (consisting of polynorbornene backbone and polystyrene side chains) in a good solvent using a model commonly applied to this class of polymers: the flexible cylinder model. Applying a series of constrained Monte‐Carlo Markov Chain analyses demonstrates the severity of the correlations between key parameters and the presence of multiple close minima in the goodness of fit space. We demonstrate that a shape‐agnostic model can fit the scattering with significantly reduced parameter correlations and less potential for complex, multimodal parameter spaces. We provide recommendations to improve the analysis of complex macromolecules in solution, highlighting the value of Bayesian methods. This approach provides richer information for understanding parameter sensitivity compared to methods which produce a single, best fit

    Evolution of Conversations in the Age of Email Overload

    Full text link
    Email is a ubiquitous communications tool in the workplace and plays an important role in social interactions. Previous studies of email were largely based on surveys and limited to relatively small populations of email users within organizations. In this paper, we report results of a large-scale study of more than 2 million users exchanging 16 billion emails over several months. We quantitatively characterize the replying behavior in conversations within pairs of users. In particular, we study the time it takes the user to reply to a received message and the length of the reply sent. We consider a variety of factors that affect the reply time and length, such as the stage of the conversation, user demographics, and use of portable devices. In addition, we study how increasing load affects emailing behavior. We find that as users receive more email messages in a day, they reply to a smaller fraction of them, using shorter replies. However, their responsiveness remains intact, and they may even reply to emails faster. Finally, we predict the time to reply, length of reply, and whether the reply ends a conversation. We demonstrate considerable improvement over the baseline in all three prediction tasks, showing the significant role that the factors that we uncover play, in determining replying behavior. We rank these factors based on their predictive power. Our findings have important implications for understanding human behavior and designing better email management applications for tasks like ranking unread emails.Comment: 11 page, 24th International World Wide Web Conferenc

    Addressing the challenges of modeling the scattering from bottlebrush polymers in solution

    Get PDF
    Small‐angle scattering measurements of complex macromolecules in solution are used to establish relationships between chemical structure and conformational properties. Interpretation of the scattering data requires an inverse approach where a model is chosen and the simulated scattering intensity from that model is iterated to match the experimental scattering intensity. This raises challenges in the case where the model is an imperfect approximation of the underlying structure, or where there are significant correlations between model parameters. We examine three bottlebrush polymers (consisting of polynorbornene backbone and polystyrene side chains) in a good solvent using a model commonly applied to this class of polymers: the flexible cylinder model. Applying a series of constrained Monte‐Carlo Markov Chain analyses demonstrates the severity of the correlations between key parameters and the presence of multiple close minima in the goodness of fit space. We demonstrate that a shape‐agnostic model can fit the scattering with significantly reduced parameter correlations and less potential for complex, multimodal parameter spaces. We provide recommendations to improve the analysis of complex macromolecules in solution, highlighting the value of Bayesian methods. This approach provides richer information for understanding parameter sensitivity compared to methods which produce a single, best fit

    Telerobotics: A simulation facility for university research

    Get PDF
    An experimental telerobotics (TR) simulation suitable for studying human operator (H.O.) performance is described. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. A number of control modes could be compared in this TR simulation, including displacement, rate and acceleratory control using position and force joysticks. A homeomorphic controller turned out to be no better than joysticks; the adaptive properties of the H.O. can apparently permit quite good control over a variety of controller configurations and control modes. Training by optimal control example seemed helpful in preliminary experiments. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. That neurological control of normal human movement contains a data period of 0.2 second may relate to this robustness of H.O. control to delay. The Ames-Berkeley enhanced perspective display was utilized in conjunction with an experimental helmet mounted display system (HMD) that provided stereoscopic enhanced views

    Concentration Dependence of the Size and Symmetry of a Bottlebrush Polymer in a Good Solvent

    Get PDF
    Bottlebrush polymers consist of a linear backbone with densely grafted side chains which impact the rigidity of the molecule. The persistence length of the bottlebrush backbone in solution is influenced by both the intrinsic structure of the polymer and the local environment, such as the solvent quality and concentration. Increasing the concentration reduces the overall size of the molecule because of the reduction in backbone stiffness. In this study, we map out the size of a bottlebrush polymer as a function of concentration for a single backbone length. Small-angle neutron scattering measurements are conducted on a polynorbornene-based bottlebrush with polystyrene side chains in a good solvent. The data are fit using a model which provides both the long and short axis radius of gyration (R_(g,2) and R_(g,1), respectively), providing a measure for how the conformation changes as a function of concentration. At low concentrations, a highly anisotropic structure is observed (R_(g,2)/R_(g,1) ≈ 4), becoming more isotropic at higher concentrations (R_(g,2)/R_(g,1) ≈ 1.5). The concentration scaling for both R_(g,2) and the overall Rg is evaluated and compared with predictions in the literature. Coarse-grained molecular dynamics simulations were also conducted to probe the impact of concentration on bottlebrush conformation, showing qualitative agreement with the experimental results

    Concentration Dependence of the Size and Symmetry of a Bottlebrush Polymer in a Good Solvent

    Get PDF
    Bottlebrush polymers consist of a linear backbone with densely grafted side chains which impact the rigidity of the molecule. The persistence length of the bottlebrush backbone in solution is influenced by both the intrinsic structure of the polymer and the local environment, such as the solvent quality and concentration. Increasing the concentration reduces the overall size of the molecule because of the reduction in backbone stiffness. In this study, we map out the size of a bottlebrush polymer as a function of concentration for a single backbone length. Small-angle neutron scattering measurements are conducted on a polynorbornene-based bottlebrush with polystyrene side chains in a good solvent. The data are fit using a model which provides both the long and short axis radius of gyration (R_(g,2) and R_(g,1), respectively), providing a measure for how the conformation changes as a function of concentration. At low concentrations, a highly anisotropic structure is observed (R_(g,2)/R_(g,1) ≈ 4), becoming more isotropic at higher concentrations (R_(g,2)/R_(g,1) ≈ 1.5). The concentration scaling for both R_(g,2) and the overall Rg is evaluated and compared with predictions in the literature. Coarse-grained molecular dynamics simulations were also conducted to probe the impact of concentration on bottlebrush conformation, showing qualitative agreement with the experimental results

    Dyadic Effects of Pokémon GO on Physical Activity and Sedentary Behavior in Mothers and Children

    Get PDF
    International Journal of Exercise Science 15(5): 142-151, 2021. Family-based mobile health applications may be an opportunity to increase children’s physical activity (PA) levels. Researchers have highlighted Pokémon GO as a potential model for future PA interventions as it integrates PA with social gamification. This study provides descriptive data on Pokémon GO usage among mothers and their children and examines differences in moderate to vigorous PA (MVPA) over time among individuals playing Pokémon GO compared to non-players using a dyadic subsample from a three-year longitudinal study. After the release of Pokémon Go in July 2016, 156 mother-child dyads completed questionnaires about Pokémon Go usage and wore accelerometers continuously for seven days at baseline (Sep 2016), six months, and twelve months. Independent sample t-tests and chi-square tests were used to investigate differences in demographics and daily MVPA by player status cross-sectionally at each time point. At baseline, six mothers and 21 children reported playing Pokémon Go. Baseline demographic characteristics were not associated with player status. Across time, mothers engaged in an average of 21.12 minutes of daily MVPA (SD = 19.7) and children in 29.35 minutes (SD = 18.88). Children’s daily MVPA did not differ by player status, but mothers who reported playing engaged in higher daily MVPA (M = 46.84, SD = 38.07) compared to non-players (M = 21.40, SD = 23.31). This naturalistic study lacked power to further analyze changes in MVPA after the release of the game due to lack of engagement with Pokémon GO. Understanding how to design a family-oriented game to bring together gamification, physical activity, and family-based interventions will be important for future public health efforts

    Can Weakness in End-Range Plantar Flexion After Achilles Tendon Repair Be Prevented?

    Get PDF
    Background: Disproportionate end-range plantar flexion weakness, decreased passive stiffness, and inability to perform a heel rise on a decline after Achilles tendon repair are thought to reflect increased tendon compliance or tendon lengthening. Since this was first noted, we have performed stronger repairs and avoided stretching into dorsiflexion for the first 12 weeks after surgery. Hypothesis: Using stronger repairs and avoiding stretching into dorsiflexion would eliminate end-range plantar flexion weakness and normalize passive stiffness. Study Design: Case series; Level of evidence, 4. Methods: Achilles repairs with epitendinous augmentation were performed on 18 patients. Plantar flexion torque, dorsiflexion range of motion (ROM), passive joint stiffness, and standing single-legged heel rise on a decline were assessed at 43 ± 24 months after surgery (range, 9 months to 8 years). Maximum isometric plantar flexion torque was measured at 20° and 10° of dorsiflexion, neutral position, and 10° and 20° of plantar flexion. Passive dorsiflexion ROM was measured with a goniometer. Passive joint stiffness was computed from the increase in passive torque from 10° to 20° of dorsiflexion. Tendon thickness was measured by use of digital calipers. Plantar flexion electromyographic (EMG) data were recorded during strength and functional tests. Analysis of variance and chi-square tests were used to assess weakness and function. Results: Marked weakness was evident on the involved side at 20° of plantar flexion (deficit, 26% ± 18%; Conclusion: The use of stronger repair techniques and attempts to limit tendon elongation by avoiding dorsiflexion stretching did not eliminate weakness in end-range plantar flexion. EMG data confirmed that end-range weakness was not due to neural inhibition. Physiological changes that alter the force transmission capability of the healing tendon may be responsible for this continued impairment. This weakness has implications for high-demand jumping and sprinting after Achilles tendon repair
    corecore