The Concentration Dependence of the Size and Symmetry of a Bottlebrush Polymer in a Good Solvent

Daniel F. Sunday^{1*}, Alexandros Chremos,^{1*} Tyler B. Martin¹, Alice B. Chang², Adam B. Burns¹, Robert H. Grubbs²

- 1. Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
- 2. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States

* Daniel.Sunday@nist.gov, Alexandros.Chremos@nist.gov

Supplemental Information

The general Guiner-Porod (GGP) model is described by Equations 1-3.¹ This model describes the scattering by using Guinier regions interconnected by power law regimes. Crossover points (Q_1, Q_2) and scaling factors (G_1, G_2) are calculated to ensure self-consistency in the transition between different regions. The model uses shape factors (s_1, s_2) to describe the approximate shape of the scattering features, where 0 represents a sphere, 1 represents a cylinder or rod, and 2 represents lamellae. A background and intensity scaling term were also included in the model. The implementation of the general Guinier-Porod model in Sasview is available in the Sasview marketplace (http://marketplace.sasview.org/), with the model name "2 Layer General Guinier Porod". The hard sphere structure factor was used where appropriate and its implementation is described in the sasview documentation.

$$I(Q) = \frac{G_2}{Q^{s_2}} \exp\left(-\frac{Q^2 R_{g,2}^2}{3 - s_2}\right) \text{ for } Q \le Q_2$$
(1)

$$I(Q) = \frac{G_1}{Q^{s_1}} \exp\left(-\frac{Q^2 R_{g,1}^2}{3-s_1}\right) \quad for \ Q_2 \le Q \le Q_1 \tag{2}$$

$$I(Q) = \frac{D}{Q^d} \quad \text{for } Q \ge Q_1 \tag{3}$$

	$R_{g,2}(\text{\AA})$	$R_{g,1}(\text{\AA})$	R _g	<i>s</i> ₁	<i>s</i> ₂	$l_{\rm p}({\rm \AA})$
Volume Fraction	<u> </u>	C	0			
	$39.8 \pm$	$27.3 \pm$		$0.74 \pm$		
0.0870	0.1	0.1	35.0 ± 0.9	0.13	0	7.9 ± 0.1
	39.0 ±	$28.6 \pm$		$0.68 \pm$		
0.0792	0.2	0.1	35.5 ± 0.9	0.15	0	7.7 ± 0.1
	38.3 ±	29.4 ±		$0.98 \pm$		
0.0739	0.1	0.1	35.8 ± 1.0	0.18	0	7.4 ± 0.1
	40.5 ±	$29.2 \pm$		$0.82 \pm$		
0.0578	0.1	0.1	36.6 ± 1.1	0.12	0	8.2 ± 0.1
	41.7 ±	$30.7 \pm$		0.73 ±		
0.0504	0.1	0.1	38.0 ± 1.0	0.15	0	8.8 ± 0.1
	41.6 ±	$29.5 \pm$		$0.88 \pm$		
0.0424	0.2	0.1	37.2 ± 0.7	0.16	0	8.7 ± 0.1
	$45.8 \pm$	$32.2 \pm$				$10.7 \pm$
0.0350	0.1	0.1	40.8 ± 1.4	0.9 ± 0.18	0	0.1
	47.5 ±	$30.0 \pm$				$11.5 \pm$
0.0287	0.2	0.1	40.3 ± 1.7	0.8 ± 0.33	0	0.1
	53.2 ±	$35.5 \pm$		$0.64 \pm$		$14.7 \pm$
0.0232	0.4	0.1	46.3 ± 0.2	0.08	0	0.1
	$60.3 \pm$	$36.4 \pm$		0.61 ±		$19.3 \pm$
0.0196	0.3	0.1	50.1 ± 0.2	0.05	0	0.1
	$66.4 \pm$	$29.5 \pm$		$1.01 \pm$		$23.9 \pm$
0.0165	0.1	0.1	49.6 ± 0.2	0.08	0	0.1
	77.2 ±	$28.6 \pm$				$33.8 \pm$
0.0124	0.3	0.1	55.2 ± 0.2	1.1 ± 0.09	0	0.2
	82.9 ±	$26.0 \pm$		$1.25 \pm$		
0.0085	0.8	0.1	57.3 ± 0.4	0.10	0.1 ± 0.01	40 ± 0.4
	84.1 ±	$25.9 \pm$		$1.24 \pm$		41.6 ±
0.0074	1.5	0.1	58.0 ± 0.9	0.11	0.2 ± 0.02	0.8
	89.0 ±	$25.8 \pm$				$47.9 \pm$
0.0043	1.2	0.1	60.8 ± 0.6	1.3 ± 0.03	0.1 ± 0.01	0.7
	96.2 ±	$22.5 \pm$		$1.47 \pm$		$58.5 \pm$
0.0021	1.4	0.1	64.1 ± 0.7	0.04	0.1 ± 0.02	0.8
	99.5 ±	$22.5 \pm$		$1.37 \pm$		$65.7 \pm$
0.0010	4.0	0.1	66.0 ± 2	0.06	0.1 ± 0.05	2.7

Table 1: Fit Results to GGP model (Figures 3 and 4). Uncertainties represent 95% confidence intervals as evaluated by the Monte-Carlo Markov Chain analysis performed by the Dream algorithm in Sasview.

References

(1) Hammouda, B. A New Guinier–Porod Model. J. Appl. Crystallogr. **2010**, 43 (4), 716–719. https://doi.org/10.1107/S0021889810015773.