833 research outputs found

    Dendritic cell metabolism

    No full text
    The past 15 years have seen enormous advances in our understanding of the receptor and signalling systems that allow dendritic cells (DCs) to respond to pathogens or other danger signals and initiate innate and adaptive immune responses. We are now beginning to appreciate that many of these pathways not only stimulate changes in the expression of genes that control DC immune functions, but also affect metabolic pathways, thereby integrating the cellular requirements of the activation process. In this Review, we focus on this relatively new area of research and attempt to describe an integrated view of DC immunometabolism

    Molecular interplay between dendritic cells and schistosomes : consequences for immune polarization

    Get PDF
    Parasitic worms of the genus, Schistosoma, infect millions of people mainly in the tropics and can cause serious morbidity. Human schistosoma infection is often associated with strong T helper 2 polarized immune responses as well as immunehyporesponsiveness. Dendritic cells play a central role in sensing of pathogens and generation of appropriate immune responses against these pathogens. This thesis describes that human schistosoma infection suppresses phenotype and T cell polarizing capacity of dendritic cells present in blood of these subjects. Furthermore, in vitro studies identified molecular markers in dendritic cells that can be used to predict whether these cells will induce T helper 1 or 2 responses following exposure to Th1-polarizing bacterial extracts or Th2- skewing lipids derived from schistosoma worms. Finally, the identification of the major Th2-polarizing component secreted by schistosoma eggs and the molecular mechanisms through which this factor instructs dendritic cells to drive this response is described. Taken together, these studies provide new insights in the molecular interplay between dendritic cells and schistosomes and as such in the cellular and molecular mechanisms behind shaping of T helper 2 immune responses and/or immunehyporesponsiveness observed during these parasitic worm infections.Netherlands Foundation for the Advancement of Tropical Research (WOTRO), Grant No W93-385 20077, J.E. Jurriaanse stichting, Sanquin Reagents, Becton Dickinson, CorningUBL - phd migration 201

    Comparison of Saturated Hydraulic Conductivity Measurement Methods for a Glacial-Till Soil

    Get PDF
    Hydraulic conductivity is the single most important hydraulic parameter for flow and transport-related phenomena in soil, but the results from different measuring methods vary under different field conditions. To evaluate the performance of four in situ saturated hydraulic conductivity (Ks) measuring methods, Ks measurements were made at four depths (15, 30, 60, and 90 cm) and five locations on a glacial-till soil of Nicollet (fine-loamy, mixed, mesic Aquic Hapludoll)-Clarion (fine-loamy, mixed, mesic Typic Hapludoll) association. The four in situ methods were: (i) Guelph permeameter, (ii) velocity permeameter, (iii) disk permeameter, and (iv) double-tube method. The Ks was also determined in the laboratory on undisturbed soil cores collected from all the five sites and four depths. The Guelph permeameter method gave the lowest Ks values, possibly because of small sample size, whereas the disk permeameter and double-tube methods gave maximum values for Ks with minimum variability, possibly because of large sample size. Maximum variability in Ks values for soil cores at shallow depths may have occurred because of the presence or absence of open-ended macropores. Estimates of Ks, however, are most comparable for the velocity permeameter and the laboratory method using a constant-head permeameter

    Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3

    Full text link
    We study low temperature properties of an atomic spinless interacting Fermi gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer. The system is described by a quantum spin 1/2 model on the triangular lattice with couplings depending on bonds directions. Using exact diagonalizations we show that the system exhibits non-standard properties of a {\it quantum spin-liquid crystal}, combining a planar antiferromagnetic order with an exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.

    Fa(c)t checking: how fatty acids shape metabolism and function of macrophages and dendritic cells

    Get PDF
    In recent years there have been major advances in our understanding of the role of free fatty acids (FAs) and their metabolism in shaping the functional properties of macrophages and DCs. This review presents the most recent insights into how cell intrinsic FA metabolism controls DC and macrophage function, as well as the current evidence of the importance of various exogenous FAs (such as polyunsaturated FAs and their oxidation products-prostaglandins, leukotrienes, and proresolving lipid mediators) in affecting DC and macrophage biology, by modulating their metabolic properties. Finally, we explore whether targeted modulation of FA metabolism of myeloid cells to steer their function could hold promise in therapeutic settings.Host-parasite interactio

    Let op bandenspanning bij berijden grasland!

    Get PDF
    Het verlagen van de bandspanning vergroot de mogelijkheden voor het berijden zoals bleek uit onderzoek op veengrasland. Ook het berijden van grasland op zware klei bij sub-optimale omstandigheden blijkt nadelig voor de grasopbrengst

    Dietary Vitamin A Impacts Refractory Telogen.

    Get PDF
    Hair follicles cycle through periods of growth (anagen), regression (catagen), rest (telogen), and release (exogen). Telogen is further divided into refractory and competent telogen based on expression of bone morphogenetic protein 4 (BMP4) and wingless-related MMTV integration site 7A (WNT7A). During refractory telogen hair follicle stem cells (HFSC) are inhibited. Retinoic acid synthesis proteins localized to the hair follicle and this localization pattern changed throughout the hair cycle. In addition, excess retinyl esters arrested hair follicles in telogen. The purpose of this study was to further define these hair cycle changes. BMP4 and WNT7A expression was also used to distinguish refractory from competent telogen in C57BL/6J mice fed different levels of retinyl esters from two previous studies. These two studies produced opposite results; and differed in the amount of retinyl esters the dams consumed and the age of the mice when the different diet began. There were a greater percentage of hair follicles in refractory telogen both when mice were bred on an unpurified diet containing copious levels of retinyl esters (study 1) and consumed excess levels of retinyl esters starting at 12 weeks of age, as well as when mice were bred on a purified diet containing adequate levels of retinyl esters (study 2) and remained on this diet at 6 weeks of age. WNT7A expression was consistent with these results. Next, the localization of vitamin A metabolism proteins in the two stages of telogen was examined. Keratin 6 (KRT6) and cellular retinoic acid binding protein 2 (CRABP2) localized almost exclusively to refractory telogen hair follicles in study 1. However, KRT6 and CRABP2 localized to both competent and refractory telogen hair follicles in mice fed adequate and high levels of retinyl esters in study 2. In mice bred and fed an unpurified diet retinol dehydrogenase SDR16C5, retinal dehydrogenase 2 (ALDH1A2), and cytochrome p450 26B1 (CYP26B1), enzymes and proteins involved in RA metabolism, localized to BMP4 positive refractory telogen hair follicles. This suggests that vitamin A may contribute to the inhibition of HFSC during refractory telogen in a dose dependent manner

    Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells

    Get PDF
    TLR agonists initiate a rapid activation program in dendritic cells (DCs) that requires support from metabolic and bioenergetic resources. We found previously that TLR signaling promotes aerobic glycolysis and a decline in oxidative phosphorylation (OXHPOS) and that glucose restriction prevents activation and leads to premature cell death. However, it remained unclear why the decrease in OXPHOS occurs under these circumstances. Using real-time metabolic flux analysis, in the present study, we show that mitochondrial activity is lost progressively after activation by TLR agonists in inflammatory blood monocyte–derived DCs that express inducible NO synthase. We found that this is because of inhibition of OXPHOS by NO and that the switch to glycolysis is a survival response that serves to maintain ATP levels when OXPHOS is inhibited. Our data identify NO as a profound metabolic regulator in inflammatory monocyte–derived DCs

    Quantum gases in trimerized kagom\'e lattices

    Get PDF
    We study low temperature properties of atomic gases in trimerized optical kagom\'{e} lattices. The laser arrangements that can be used to create these lattices are briefly described. We also present explicit results for the coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a single component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per trimer is verified in a mean field approach. The main emphasis of the paper is on an atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with two fermions per site. This system is shown to be described by a quantum spin 1/2 model on the triangular lattice with couplings that depend on the bond directions. We investigate this model by means of exact diagonalization. Our key finding is that the system exhibits non-standard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state with an exceptionally large number of low energy excitations. The possibilities of experimental verification of our theoretical results are critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous minor corrections with respect to former lanl submissio

    Mitochondrial respiratory capacity is a critical regulator of CD8<sup>+</sup> T cell memory development

    Get PDF
    CD8+ T cells undergo major metabolic changes upon activation, but how metabolism influences the establishment of long-lived memory T cells after infection remains a key question. We have shown here that CD8+ memory T cells, but not CD8+ T effector (Teff) cells, possessed substantial mitochondrial spare respiratory capacity (SRC). SRC is the extra capacity available in cells to produce energy in response to increased stress or work and as such is associated with cellular survival. We found that interleukin-15 (IL-15), a cytokine critical for CD8+ memory T cells, regulated SRC and oxidative metabolism by promoting mitochondrial biogenesis and expression of carnitine palmitoyl transferase (CPT1a), a metabolic enzyme that controls the rate-limiting step to mitochondrial fatty acid oxidation (FAO). These results show how cytokines control the bioenergetic stability of memory T cells after infection by regulating mitochondrial metabolism
    • …
    corecore