102 research outputs found

    Tube Models for Rubber-Elastic Systems

    Full text link
    In the first part of the paper we show that the constraining potentials introduced to mimic entanglement effects in Edwards' tube model and Flory's constrained junction model are diagonal in the generalized Rouse modes of the corresponding phantom network. As a consequence, both models can formally be solved exactly for arbitrary connectivity using the recently introduced constrained mode model. In the second part, we solve a double tube model for the confinement of long paths in polymer networks which is partially due to crosslinking and partially due to entanglements. Our model describes a non-trivial crossover between the Warner-Edwards and the Heinrich-Straube tube models. We present results for the macroscopic elastic properties as well as for the microscopic deformations including structure factors.Comment: 15 pages, 8 figures, Macromolecules in pres

    Kinetic models with randomly perturbed binary collisions

    Full text link
    We introduce a class of Kac-like kinetic equations on the real line, with general random collisional rules, which include as particular cases models for wealth redistribution in an agent-based market or models for granular gases with a background heat bath. Conditions on these collisional rules which guarantee both the existence and uniqueness of equilibrium profiles and their main properties are found. We show that the characterization of these stationary solutions is of independent interest, since the same profiles are shown to be solutions of different evolution problems, both in the econophysics context and in the kinetic theory of rarefied gases

    Mechanical Properties of End-crosslinked Entangled Polymer Networks using Sliplink Brownian Dynamics Simulations

    Full text link
    The mechanical properties of a polymeric network containing both crosslinks and sliplinks (entanglements) are studied using a multi-chain Brownian dynamics simulation. We coarse-grain at the level of chain segments connecting consecutive nodes (cross- or sliplinks), with particular attention to the Gaussian statistics of the network. Affine displacement of nodes is not imposed: their displacement as well as sliding of monomers through sliplinks is governed by force balances. The simulation results of stress in uniaxial extension and the full stress tensor in simple shear including the (non-zero) second normal stress difference are presented for monodisperse chains with up to 18 entanglements between two crosslinks. The cases of two different force laws of the subchains (Gaussian chains and chains with finite extensibility) for two different numbers of monomers in a subchain (no = 50 and no = 100) are examined. It is shown that the additivity assumption of slip- and crosslink contribution holds for sufficiently long chains with two or more entanglements, and that it can be used to construct the strain response of a network of infinitely long chains. An important consequence is that the contribution of sliplinks to the small-strain shear modulus is about ⅔ of the contribution of a crosslink

    Mechanisms of Cognitive Impairment in Cerebral Small Vessel Disease: Multimodal MRI Results from the St George's Cognition and Neuroimaging in Stroke (SCANS) Study.

    Get PDF
    Cerebral small vessel disease (SVD) is a common cause of vascular cognitive impairment. A number of disease features can be assessed on MRI including lacunar infarcts, T2 lesion volume, brain atrophy, and cerebral microbleeds. In addition, diffusion tensor imaging (DTI) is sensitive to disruption of white matter ultrastructure, and recently it has been suggested that additional information on the pattern of damage may be obtained from axial diffusivity, a proposed marker of axonal damage, and radial diffusivity, an indicator of demyelination. We determined the contribution of these whole brain MRI markers to cognitive impairment in SVD. Consecutive patients with lacunar stroke and confluent leukoaraiosis were recruited into the ongoing SCANS study of cognitive impairment in SVD (n = 115), and underwent neuropsychological assessment and multimodal MRI. SVD subjects displayed poor performance on tests of executive function and processing speed. In the SVD group brain volume was lower, white matter hyperintensity volume higher and all diffusion characteristics differed significantly from control subjects (n = 50). On multi-predictor analysis independent predictors of executive function in SVD were lacunar infarct count and diffusivity of normal appearing white matter on DTI. Independent predictors of processing speed were lacunar infarct count and brain atrophy. Radial diffusivity was a stronger DTI predictor than axial diffusivity, suggesting ischaemic demyelination, seen neuropathologically in SVD, may be an important predictor of cognitive impairment in SVD. Our study provides information on the mechanism of cognitive impairment in SVD

    Pro-inflammatory Monocyte Phenotype During Acute Progression of Cerebral Small Vessel Disease

    Get PDF
    Background: The etiology of cerebral small vessel disease (SVD) remains elusive, though evidence is accumulating that inflammation contributes to its pathophysiology. We recently showed retrospectively that pro-inflammatory monocytes are associated with the long-term progression of white matter hyperintensities (WMHs). In this prospective high-frequency imaging study, we hypothesize that the incidence of SVD progression coincides with a pro-inflammatory monocyte phenotype. Methods: Individuals with SVD underwent monthly magnetic resonance imaging (MRI) for 10 consecutive months to detect SVD progression, defined as acute diffusion-weighted imaging-positive (DWI+) lesions, incident microbleeds, incident lacunes, and WMH progression. Circulating inflammatory markers were measured, cytokine production capacity of monocytes was assessed after ex vivo stimulation, and RNA sequencing was performed on isolated monocytes in a subset of participants. Results: 13 out of 35 individuals developed SVD progression (70 ± 6 years, 54% men) based on incident lesions (n = 7) and/or upper quartile WMH progression (n = 9). Circulating E-selectin concentration (p < 0.05) and the cytokine production capacity of interleukin (IL)-1β and IL-6 (p < 0.01) were higher in individuals with SVD progression. Moreover, RNA sequencing revealed a pro-inflammatory monocyte signature including genes involved in myelination, blood–brain barrier, and endothelial–leukocyte interaction. Conclusions: Circulating monocytes of individuals with progressive SVD have an inflammatory phenotype, characterized by an increased cytokine production capacity and a pro-inflammatory transcriptional signature

    Computed tomography hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch to identify stroke patients eligible for thrombolysis

    Get PDF
    Background and purposeAutomated perfusion imaging can detect stroke patients with unknown time of symptom onset who are eligible for thrombolysis. However, the availability of this technique is limited. We, therefore, established the novel concept of computed tomography (CT) hypoperfusion-hypodensity mismatch, i.e., an ischemic core lesion visible on cerebral perfusion CT without visible hypodensity in the corresponding native cerebral CT. We compared both methods regarding their accuracy in identifying patients suitable for thrombolysis.MethodsIn a retrospective analysis of the MissPerfeCT observational cohort study, patients were classified as suitable or not for thrombolysis based on established time window and imaging criteria. We calculated predictive values for hypoperfusion-hypodensity mismatch and automated perfusion imaging to compare accuracy in the identification of patients suitable for thrombolysis.ResultsOf 247 patients, 219 (88.7%) were eligible for thrombolysis and 28 (11.3%) were not eligible for thrombolysis. Of 197 patients who were within 4.5 h of symptom onset, 190 (96.4%) were identified by hypoperfusion-hypodensity mismatch and 88 (44.7%) by automated perfusion mismatch (p &lt; 0.001). Of 22 patients who were beyond 4.5 h of symptom onset but were eligible for thrombolysis, 5 patients (22.7%) were identified by hypoperfusion-hypodensity mismatch. Predictive values for the hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch were as follows: sensitivity, 89.0% vs. 50.2%; specificity, 71.4% vs. 100.0%; positive predictive value, 96.1% vs. 100.0%; and negative predictive value, 45.5% vs. 20.4%.ConclusionThe novel method of hypoperfusion-hypodensity mismatch can identify patients suitable for thrombolysis with higher sensitivity and lower specificity than established techniques. Using this simple method might therefore increase the proportion of patients treated with thrombolysis without the use of special automated software.The MissPerfeCT study is a retrospective observational multicenter cohort study and is registered with clinicaltrials.gov (NCT04277728)

    Genome-wide genotyping demonstrates a polygenic risk score associated with white matter hyperintensity volume in CADASIL

    Get PDF
    Background and Purpose—White matter hyperintensities (WMH) on MRI are a quantitative marker for sporadic cerebral small vessel disease and are highly heritable. To date, large-scale genetic studies have identified only a single locus influencing WMH burden. This might in part relate to biological heterogeneity of sporadic WMH. The current study searched for genetic modifiers of WMH volume in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a monogenic small vessel disease. Methods—We performed a genome-wide association study to identify quantitative trait loci for WMH volume by combining data from 517 CADASIL patients collected through 7 centers across Europe. WMH volumes were centrally analyzed and quantified on fluid attenuated inversion recovery images. Genotyping was performed using the Affymetrix 6.0 platform. Individuals were assigned to 2 distinct genetic clusters (cluster 1 and cluster 2) based on their genetic background. Results—Four hundred sixty-six patients entered the final genome-wide association study analysis. The phenotypic variance of WMH burden in CADASIL explained by all single nucleotide polymorphisms in cluster 1 was 0.85 (SE=0.21), suggesting a substantial genetic contribution. Using cluster 1 as derivation and cluster 2 as a validation sample, a polygenic score was significantly associated with WMH burden (P=0.001) after correction for age, sex, and vascular risk factors. No single nucleotide polymorphism reached genome-wide significance. Conclusions—We found a polygenic score to be associated with WMH volume in CADASIL subjects. Our findings suggest that multiple variants with small effects influence WMH burden in CADASIL. The identification of these variants and the biological pathways involved will provide insights into the pathophysiology of white matter disease in CADASIL and possibly small vessel disease in general

    Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities:A multicenter study in 3132 memory clinic patients

    Get PDF
    INTRODUCTION: White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS: Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume.RESULTS: VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p &lt; 0.001), external capsule (B = 0.052, p &lt; 0.001), and middle cerebellar peduncle (B = 0.067, p &lt; 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p &lt; 0.001) and splenium (B = 0.103, p &lt; 0.001). DISCUSSION: Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. Highlights: Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.</p
    • …
    corecore