10,551 research outputs found

    Eccentric discs in binaries with intermediate mass ratios: Superhumps in the VY Sculptoris stars

    Full text link
    We investigate the role of the eccentric disc resonance in systems with mass ratios q greater than 1/4, and demonstrate the effects that changes in the mass flux from the secondary star have upon the disc radius and structure. The addition of material with low specific angular momentum to its outer edge restricts a disc radially. Should the mass flux from the secondary be reduced, it is possible for the disc in a system with mass ratio as large as 1/3 to expand to the 3:1 eccentric inner Lindblad resonance and for superhumps to be excited.Comment: 6 pages with 7 figures, accepted by MNRA

    Disclination-mediated thermo-optical response in nematic glass sheets

    Get PDF
    Nematic solids respond strongly to changes in ambient heat or light, significantly differently parallel and perpendicular to the director. This phenomenon is well characterized for uniform director fields, but not for defect textures. We analyze the elastic ground states of a nematic glass in the membrane approximation as a function of temperature for some disclination defects with an eye towards reversibly inducing three-dimensional shapes from flat sheets of material, at the nano-scale all the way to macroscopic objects, including non-developable surfaces. The latter offers a new paradigm to actuation via switchable stretch in thin systems.Comment: Specific results for spiral defects now added. References to Witten, Mahadevan and Ben Amar now added

    Dependence of the critical temperature of laser-ablated YBa2Cu3O(7-delta) thin films on LaAlO3 substrate growth technique

    Get PDF
    Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion

    The environmental analysis of helicopter operations by Federal agencies: Current procedures and research needs

    Get PDF
    The technical, economic, and environmental problems restricting commercial helicopter passenger operations are reviewed. The key considerations for effective assessment procedures are outlined and a preliminary model for the environmental analysis of helicopters is developed. It is recommended that this model, or some similar approach, be used as a common base for the development of comprehensive environmental assessment methods for each of the federal agencies concerned with helicopters. A description of the critical environmental research issues applicable to helicopters is also presented

    Chemical and kinetic equilibrations via radiative parton transport

    Full text link
    A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.Comment: Presented at 24th International Nuclear Physics Conference (INPC2010), Vancouver, Canada, 4-9 July 201

    Wear and Friction Modeling on Lifeboat Launch Systems

    Get PDF
    The RNLI provides search and rescue cover along the UK and RoI coast using a variety of lifeboats and launch techniques. In locations where there is no natural harbour it is necessary to use a slipway to launch the lifeboat into the sea. Lifeboat slipway stations consist of an initial section where the boat is held on rollers followed by an inclined keelway lined with low friction composite materials, the lifeboat is released from the top of the slipway and proceeds under its own weight into the water. The lifeboat is later recovered using a winch line. It is common to manually apply grease to the composite slipway lining before each launch and recovery in order to ensure sufficiently low friction for successful operation. With the introduction of the Tamar class lifeboat it is necessary to upgrade existing boathouses and standardise slipway operational procedures to ensure consistent operation. The higher contact pressures associated with the new lifeboat have led to issues of high friction and wear on the composite slipway linings and the manual application of grease to reduce friction is to be restricted due to environmental impact and cost factors. This paper presents a multidisciplinary approach to modelling slipway panel wear and friction using tribometer testing in conjunction with finite element analysis and slipway condition surveys to incorporate common real-world effects such as panel misalignments. Finally, it is shown that a freshwater lubrication system is effective, reducing cost and environmental impacts while maintaining good friction and wear performance

    KUV 01584-0939: A Helium-transferring Cataclysmic Variable with an Orbital Period of 10 Minutes

    Full text link
    High speed photometry of KUV 01584-0939 (alias Cet3) shows that is has a period of 620.26 s. Combined with its hydrogen-deficient spectrum, this implies that it is an AM CVn star. The optical modulation is probably a superhump, in which case the orbital period will be slightly shorter than what we have observed.Comment: Published by PASP. See also the latest Early-Release Research Paper website of the PAS

    Sequentially evaporated thin Y-Ba-Cu-O superconductor films: Composition and processing effects

    Get PDF
    Thin films of YBa2Cu3O(7-beta) have been grown by sequential evaporation of Cu, Y, and BaF2 on SrTiO3 and MgO substrates. The onset temperatures were as high as 93 K while T sub c was 85 K. The Ba/Y ratio was varied from 1.9 to 4.0. The Cu/Y ratio was varied from 2.8 to 3.4. The films were then annealed at various times and temperatures. The times ranged from 15 min to 3 hr, while the annealing temperatures used ranged from 850 C to 900 C. A good correlation was found between transition temperature (T sub c) and the annealing conditions; the films annealed at 900 C on SrTiO3 had the best T sub c's. There was a weaker correlation between composition and T sub c. Barium poor films exhibitied semiconducting normal state resistance behavior while barium rich films were metallic. The films were analyzed by resistance versus temperature measurements and scanning electron microscopy. The analysis of the films and the correlations are reported

    Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates

    Get PDF
    The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates
    • …
    corecore