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Disclination-mediated thermo-optical response in nematic glass sheets
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Nematic solids respond strongly to changes in ambient heat or light, significantly differently parallel and
perpendicular to the director. This phenomenon is well characterized for uniform director fields but not for
defect textures. We analyze the elastic ground states of a nematic glass in the membrane approximation as a
function of temperature for some disclination defects with an eye toward reversibly inducing three-dimensional
shapes from flat sheets of material, at the nanoscale all the way to macroscopic objects, including nondevel-
opable surfaces. The latter offers a paradigm to actuation via switchable stretch in thin systems.
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Nematic glasses (densely cross-linked networks) [1] are
solids with a natural state of elongation along their director
and contraction perpendicular that depends on their orienta-
tional order. Accordingly they suffer large, reversible length
change with heating [2], illumination [3,4], solvent uptake,
pH change and any other stimulus that causes order change.
For glasses these strains can be 2—3 % and of opposite sign
(without conserving volume) along and perpendicular to the
director. They can then exhibit spectacular effects such as
large bend resulting from gradients of stimuli [5] (light, sol-
vent) or from uniform stimuli (such as temperature or weakly
absorbing light) but with a director gradient through, for in-
stance, the section of a sheet or cantilever [2-4] (usually
twist or splay-bend). Glasses are distinguished from elas-
tomers by being so heavily cross-linked that the director field
only changes as a result of convection due to material shape
change from the elastic strain. Nematic glass directors do not
rotate relative to the matrix as in nematic elastomers—they
are [3] conventional uniaxial elastic solids, with moduli of
about X10* higher than those of elastomers. We are most
concerned with the thermally or optically inspired length
changes which we take to be by a factor \ along the director
and by N7 perpendicular to the director (where v fulfills the
role of a thermal or optical Poisson ratio, were the deforma-
tions to be infinitesimal). Elastic energy cost would be asso-
ciated with imposed changes away from these new natural
shapes—we find deformation fields matching these thermo/
optical changes and thus of zero elastic energy in the mem-
brane limit we take. Accordingly we do not need to explore
the solid body elasticity specific to uniaxial materials.

Director fields can be established in the nematic liquid
progenitor phase before cross-linking and are permanently
recorded in the solid state achieved after linkage. In fact
complex, three-dimensional (3D) director fields for subtle
mechanical response can be achieved in nematic glasses [6]
via holography and surface preparation. From the point of
view of device design, the ability to “write” an initial direc-
tor field into a solid so that it distorts in a predictable (and
reversible way) into a new shape with applied temperature or
light would be ground breaking. In particular, the ability to
take flat thin sheets of material and turn them into prescribed
potentially complicated nondevelopable shapes—at nearly
any length scale—is highly sought after. Accordingly, we
consider here the elastic response of thin sheets of nematic
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glass in the membrane approximation. We are interested in
thin sheets where the director is uniform through the thick-
ness. In this situation, a change in nematic order gives rise to
in-plane stretches (or contractions). If the initial director field
is not homogeneous, then this change in nematic order gives
rise to inhomogeneous changes of stretch that may or may
not be compatible. A key observation here is that thin sheets
can accommodate many more potential inhomogeneous
changes in stretch compared to bulk 3D specimens by pos-
sibly deforming out of plane—in our case cones and anti-
cones with localized Gaussian curvature, see Fig. 1. Further,
in thin sheets, the energy and forces associated with mem-
brane mode (in-plane stretch) scales as the thickness while
those associated with bending mode (differential in-plane
stretch) scales as the third power of thickness. So the bend-
ing energy is negligible compared to the in-plane stretches.
All of this leads to a new paradigm for actuation [7]: if we
are able to find a director arrangement that leads to stretches
that are incompatible in bulk but compatible in sheets, then
the change in order can be used to generate out-of-plane
deformations with a very large blocking force (one that
scales with thickness). This is in contrast with small blocking
forces (third power of thickness) associated with designs in-
volving bending cantilevers. We show that +1 disclinations
are indeed such arrangements.

Disclination defect textures are not extensively studied,
experimentally or theoretically, in nematic solids. However it
is known that the energy minimizing deformation associated
locally with changes in their nematic order is not compatible
in some 3D disclinations [8]. We analyze the mechanical

FIG. 1. (Color online) A flat nematic glass sheet with an azi-
muthal +1 disclination heats to a cone or cools to “anticones” (7).
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FIG. 2. (Color online) +1 disclinations—azimuthal and radial
textures have as intermediates logarithmic spirals (shown with &
=45°). The heavy lines (red, online) are the integral curves of the
director field, and those of its complement are light (blue).

response and elastic ground state of the most experimentally
accessible disclination defect in two dimensions that with
topological charge +1. We argue that it is a powerful way to
induce shape change, specifically through the introduction of
a point of localized Gaussian curvature. Figure 1 shows ex-
amples of initially flat defected sheets after heating or cool-
ing.

We illustrate some ways director fields with this disclina-
tion charge could be used in concert with system geometry
for applications, such as sharp bending, twisting, or forming
nondevelopable (anticlastic) surfaces and cantilevers.

Shape response to nematic defects has been investigated
theoretically in fluid systems [9,10] where the dominant in-
fluences include surface tension, Frank elasticity, and order-
curvature coupling. Our solids are in the opposite limit—
elastic stresses dominate over Frank elasticity for length
scales greater than a nematic penetration depth for solids &
=K/ u, where u and K are the shear modulus and Frank
constant, respectively. (€~ 1071 m for a glass.) Also, in our
problem surface energies, o, play no role; competition with
solid body elasticity produces a length scale o/ u of compa-
rable smallness to & and such effects are also irrelevant.

Response closely analogous to ours has been analyzed by
Ben Amar ef al. in the elasticity of botanical systems when
anisotropic growth creates internal stresses and forces planar
systems into the third dimension [11,12] as cones or “e-
cones” (our anticones). They and we deal with localized
Gaussian curvature and hence localized elastic stretch. Such
stress intensification occurs in folding and crumpling, see
Witten’s review [13]. However, our cones and anticones are
simple, not “d-cones” [13], and our systems naturally take up
such shapes rather than concentrate stress in response to spa-
tial crowding. Indeed, except for very weak spontaneous dis-
tortions, our tip extent is of the order of the thickness as in
classical simple cones [13]—we return elsewhere to the core
or far-field bend or stretch energy balance. Thus our system
differs from the cone sources that generate crumpling.

We consider +1 disclinations. In the membrane limit in
which we choose to work, escape in to the third dimension
[14] of the director field is not possible except perhaps near
the core, and these disclinations are true topological defects.
For +1 defects, many different textures, though topologically
equivalent (see Fig. 2), differ nontrivially in their mechanical
response. We first analyze azimuthal and radial textures. m
# 1 defects present considerable elastic compatibility prob-
lems, even in the 2D forms of this Rapid Communication,
and we consider their mechanical effects elsewhere.
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Consider a thin sheet of nematic glass whose director field
is azimuthal around a +1 disclination defect, as in the left of
Fig. 2, and which is flat at some reference temperature, T,
As the sample is heated above T, the decline in nematic
order will cause a contraction of the natural length along the
nematic directors with a local elongation of the natural
length due to Poisson effects normal to them. In a free uni-
form glass these natural length changes would be manifested
by actual mechanical strains so that the elastic ground state is
achieved. Since the chosen director field is circularly sym-
metric, with integral curves simply concentric circles cen-
tered on the defect, clearly the sheet has a problem accom-
modating this change in the natural lengths as
circumferences shrink while the corresponding natural radii
grow.

Fortunately, in the membrane approximation where we
may neglect bending energies, there is an obvious geometric
solution that allows the nematic glass to respond to the im-
posed thermal strain without paying the high energetic cost
associated with elastic compressions and expansions relative
to this changed state—a cone. This may be seen intuitively
by keeping track of the deformation of a circle of material
centered on the defect. At Tj) the sheet of nematic glass is
flat, and the circle maintains the familiar perimeter-to-radius
ratio of 27r. However, as the temperature rises, the perimeter
wants to change by a factor of the thermal deformation gra-
dient along the director, P— P'=\P, where here A<1.
Meanwhile, see Fig. 1, the material (in-plane) radius is
changing as well due to the thermal or optical Poisson effects
associated with the perimeter’s change, ry—r'=\""r,. For
glasses v is in the range 1/3 to 2 [3]. Together, these trans-
formations imply that upon heating, a circle of material on
the sheet remains circular but adopts a new in-material
perimeter-to-radius ratio that of a circle enclosing a cone’s
tip (Fig. 1, first panel):

P' =2a\""r" — 27" sin ¢

— (T =Ty) =sin”' (A7), (1)

with ¢ as the cone opening angle. One can think of r’ sin ¢
as the embedded radius. The localized Gaussian curvature
associated with the cone tip is thus 277(1 —sin ¢); circles en-
closing the tip of a nondevelopable cone no longer have the
ratio 2 of the perimeter to the in-plane radius, unlike circles
on the cone but not enclosing the tip. Away from the singu-
larity, there is no Gaussian curvature and hence no shape-
induced elastic compressions or extensions. Therefore our
sheet of nematic glass responds to temperatures above T}, by
deforming out of plane, breaking up-down symmetry in the
process. The opening angle varies sensitively with small
strains; a 2—3 % contraction with v~ 2 achieved over 90 °C
[2] gives ¢~7T0°—66°, such strains also being achievable
for modest illuminations in photoglasses [4].

But what if we cool the azimuthal sample below T, in-
creasing the nematic order relative to the reference state?
The arguments relating the local changes in length along and
normal to the nematic director go through unchanged, how-
ever now A>1, invalidating our previous ansatz cone
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solution—now the perimeter is “too long” for the in-plane
radius and a more complex deformation must result.

We consider deformed surfaces where the height varies
linearly with the distance from the center or the defect. Con-
sider a circle of radius r, centered at the defect in the flat
undeformed reference plane. After deformation, this circle
becomes a curve described by {r(¢), ¢,h(p)} in cylindrical
coordinates (r, ¢,h) in the deformed configuration and pa-
rametrized by the azimuthal angle ¢. If the material is in the
minimal energy state unstretched from its new natural con-
figuration, this curve has to satisfy two constraints. First, it
has to have a constant distance R=A""r, from the origin
(defect) and second, its length has to be equal to P=2\r
=2m7A""R. Thus, the curve has to lie on a sphere of radius R;
see the trajectory in the last panel of Fig. 1. Further, since the
length of the curve P is greater than the length 27R of the
great circle of the sphere, this curve has to oscillate. In other
words, the deformed surfaces oscillate azimuthally and these
oscillations grow linearly radially as shown in Fig. 1. We call
them anticones. We also note

2
R=r 1+(ﬁ), 2)

P fzwd¢\/<dr>2+<dh>2+ 2 3)
= — — re.
0 d¢ d¢

The simplest possibilities for & are

h(r;A,n)=Arsin n¢ (4)

for antinodal line angle a=tan™! A (amplitude in effect; see
Fig. 1) and integer n (so that the curve is closed). Plugging
this ansatz into Eq. (2) gives the relationship between the r
coordinate and ¢ at constant R needed for the perimeter:

r=(1+A?sin’> ng)""’R. (5)

Returning this relation and the form of A to Eq. (3) for the
perimeter gives grouping factors of R and simplifying

P(R)=2mRI(n,A), (6)

where I(n,A) depends only on the scale A and the state n:

In.A) fl J \/ n*A? cos® 2mmnu 1
n,A) = u - + - i
0 (1+A?sin® 2mnu)?> 1 +A? sin® 27nu

Connecting the radius and perimeter as in Eq. (1) gives here
I(n,A)=\"""(T-T,); as temperature and hence spontaneous
distortion changes, so does the character (that is, A and n) of
the anticone. The negative Gaussian curvature localized at
the apex of the anticone is 27r(1—1). As appropriate, /=1 for
n=0—the surface is a flat plane. Otherwise I ranges from 1
to |n| for A=0— o0, see Fig. 3.

The analogous cosine solutions simply give rise to rotated
versions of the same surfaces for all n# 0, recovering the
conical solution discussed earlier for n=0. In this case
I(A;n=0) ranges from 1 at A=0 to 0 at A=o0, as required.
The behavior of I for n# 0 is encouraging—our trial solu-
tions yield precisely the geometries that accommodate at
zero stretch energy a cooling of our azimuthal +1 defect

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 81, 060701(R) (2010)

4 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1
n=4
3 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
n=3
2 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
n=2
1
1 2 3 4 45

FIG. 3. (Color online) The behavior of I(n,A) for different val-
ues of n and as a function of A. When A is large, I(n,A) approaches
n.

below T|,. However, since each individual surface is limited
to a maximum perimeter-to-radius ratio of 27T|n , we would
expect interesting transition behavior as cooling leads to
strains requiring ever more crumpled geometries, with tran-
sition states characterized by simple Fourier combinations of
the “pure” surfaces or, in extreme cases, exotic surfaces that
are multiply re-entrant in ¢. Figure 1 shows an n=3 anticone
where the crumples take up more perimeter than the more
slowly varying n=2 anticone. See [12] for an analysis of
large amplitude anticones where the functions h(¢),r(¢p)
may not be single valued. We conjecture that all minimal
membrane energy solutions of these defects are anticones.

A paradigm for actuation now arises. Although we are
dealing with thin sheets (and later cantilevers) in the mem-
brane approximation where shape change has low bending
energy, large forces can be exerted by switching on and off
Gaussian curvature via stretch modes that arise if the natural
and imposed geometries are in conflict.

For radial textures (Fig. 2), the roles of the direct thermal
strain and Poisson strain are swapped. Heating above T, now
requires a shortening of the radial length due to decreased
nematic order while the azimuthal direction expands from
the corresponding Poisson effect—equivalent to lowering the
temperature in the azimuthal texture. Hence, each of these
textures behaves as the other under the mapping 7-T7
— TO_ T.

Generically a +1 disclination defect has an intermediate
angle o of the director with respect to the radial vector from
the defect core. As a result, the effect of the direct and Pois-
son strains are now mixed along circles and radii centered on
the defect. Curves along which the material feels the maxi-
mal effect of the direct strain and none of the Poisson strain
and vice versa are the integral curves of the director field and
its normal complement, respectively. For +1 textures with
0<o<m/2, the integral curves are logarithmic spirals in-
stead of simple circles and radii (Fig. 2).

An analysis we present elsewhere shows that the spiral
angle 6 evolves with spontaneous deformation A. Defining
b=cot &, one finds that »— b/\'*”. For instance for heating
where N <1, then the angle 6 decreases—the spiral tends
more to the radial direction. Also a mismatch between radius
and perimeter as considered above arises: cones or anticones
form depending on whether the radius or perimeter grows
relative to the other. For instance for an initial 6> w/4 and
hence b initially <1, the spiral gives a conical response for
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N e (b¥1+” 1) and anticones otherwise. The cone angle is
. 232
p=sin" [l

There is a new effect, however, because of the spiral angle
of the director relative to the radial direction, material under-
goes motion with an azimuthal component. Furthermore, if &
and A\ are such that an out-of-plane deformation into a cone
is required, then this rotation, combined with the material’s
spontaneous choice to form an “upward” or “downward”
pointing cone as the material moves from two to three di-
mensions, leads to a spontaneously broken chiral symmetry.
This symmetry breaking does not occur for the anticone so-
lutions, as they do not break up-down symmetry.

Consider advantageous ways to use such sheets other than
as cone or anticone machines. Simplest would be to break
the circular symmetry by cutting out a cantilever of material.
Strips cut from these defected textures can display a wide
range of rich behavior (Fig. 4): cusped with sharp bending,
pure twist, curvature reversal, and combinations of these de-
pending on the orientation of the cantilever with the defect.
Blocking forces would depend on the dimensions of the (an-
ti)conical region compared with the length of the arms.
Boundary conditions are very important, and the cut out ma-
terial must encompass the defect core. Such active response
in strips could be used as a light activated stirrer, actuator,
swimmer, or perhaps as thermally sensitive simple machines.
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FIG. 4. (Color online) Disclinations in cantilevers also cause
unusual thermal or optical response. (a) a strip cut from a +1 texture
conically deforming (with ¢=45°) bends with a conical cusp. An-
ticonical deformations are even richer (here a=45°), with (b) anti-
clastic bending (n=2, antinodes aligned with the cantilever axes)
(c) pure twist (nodes aligned) or (d) curvature reversal (n=3).

“Frozen-in” disclinated director fields in responsive nem-
atic glasses are rich and promising systems. To exploit them
to their fullest however, will rely on understanding the me-
chanical response of all the defect charges, along with how
interacting multiple defects influence the resultant strain-
mediated shape change. Such understanding would allow
blueprinting an arbitrary three-dimensional shape in a flat
sheet and switching it on at will.

C.D.M.,, K.B., and M.W. acknowledge support from the
EPSRC-GB.
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