20,349 research outputs found
Development of the Trident 1 aerodynamic saike mechanism
The Aerospike drag reduction mechanism was designed and developed for use on the Trident I submarine launched ballistic missile. This mechanism encounters a unique combination of environments necessitating unique design solutions to ensure satisfactory operation over its design life. The development of the Aerospike is reviewed emphasizing the unique and interesting problems encountered and their solutions
Absence of long-range order in a spin-half Heisenberg antiferromagnet on the stacked kagome lattice
We study the ground state of a spin-half Heisenberg antiferromagnet on the
stacked kagome lattice by using a spin-rotation-invariant Green's-function
method. Since the pure two-dimensional kagome antiferromagnet is most likely a
magnetically disordered quantum spin liquid, we investigate the question
whether the coupling of kagome layers in a stacked three-dimensional system may
lead to a magnetically ordered ground state. We present spin-spin correlation
functions and correlation lengths. For comparison we apply also linear spin
wave theory. Our results provide strong evidence that the system remains
short-range ordered independent of the sign and the strength of the interlayer
coupling
Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts
In order to study the mechanisms limiting the topological chain confinement in polymer melts, we have performed neutron-spin-echo investigations of the single-chain dynamic-structure factor from polyethylene melts over a large range of chain lengths. While at high molecular weight the reptation model is corroborated, a systematic loosening of the confinement with decreasing chain length is found. The dynamic-structure factors are quantitatively described by the effect of contour-length fluctuations on the confining tube, establishing this mechanism on a molecular level in space and time
Improved bounds for the crossing numbers of K_m,n and K_n
It has been long--conjectured that the crossing number cr(K_m,n) of the
complete bipartite graph K_m,n equals the Zarankiewicz Number Z(m,n):=
floor((m-1)/2) floor(m/2) floor((n-1)/2) floor(n/2). Another long--standing
conjecture states that the crossing number cr(K_n) of the complete graph K_n
equals Z(n):= floor(n/2) floor((n-1)/2) floor((n-2)/2) floor((n-3)/2)/4. In
this paper we show the following improved bounds on the asymptotic ratios of
these crossing numbers and their conjectured values:
(i) for each fixed m >= 9, lim_{n->infty} cr(K_m,n)/Z(m,n) >= 0.83m/(m-1);
(ii) lim_{n->infty} cr(K_n,n)/Z(n,n) >= 0.83; and
(iii) lim_{n->infty} cr(K_n)/Z(n) >= 0.83.
The previous best known lower bounds were 0.8m/(m-1), 0.8, and 0.8,
respectively. These improved bounds are obtained as a consequence of the new
bound cr(K_{7,n}) >= 2.1796n^2 - 4.5n. To obtain this improved lower bound for
cr(K_{7,n}), we use some elementary topological facts on drawings of K_{2,7} to
set up a quadratic program on 6! variables whose minimum p satisfies
cr(K_{7,n}) >= (p/2)n^2 - 4.5n, and then use state--of--the--art quadratic
optimization techniques combined with a bit of invariant theory of permutation
groups to show that p >= 4.3593.Comment: LaTeX, 18 pages, 2 figure
Absence of magnetic order for the spin-half Heisenberg antiferromagnet on the star lattice
We study the ground-state properties of the spin-half Heisenberg
antiferromagnet on the two-dimensional star lattice by spin-wave theory, exact
diagonalization and a variational mean-field approach. We find evidence that
the star lattice is (besides the \kagome lattice) a second candidate among the
11 uniform Archimedean lattices where quantum fluctuations in combination with
frustration lead to a quantum paramagnetic ground state. Although the classical
ground state of the Heisenberg antiferromagnet on the star exhibits a huge
non-trivial degeneracy like on the \kagome lattice, its quantum ground state is
most likely dimerized with a gap to all excitations. Finally, we find several
candidates for plateaux in the magnetization curve as well as a macroscopic
magnetization jump to saturation due to independent localized magnon states.Comment: new extended version (6 pages, 6 figures) as published in Physical
Review
Localized-magnon states in strongly frustrated quantum spin lattices
Recent developments concerning localized-magnon eigenstates in strongly
frustrated spin lattices and their effect on the low-temperature physics of
these systems in high magnetic fields are reviewed. After illustrating the
construction and the properties of localized-magnon states we describe the
plateau and the jump in the magnetization process caused by these states.
Considering appropriate lattice deformations fitting to the localized magnons
we discuss a spin-Peierls instability in high magnetic fields related to these
states. Last but not least we consider the degeneracy of the localized-magnon
eigenstates and the related thermodynamics in high magnetic fields. In
particular, we discuss the low-temperature maximum in the isothermal entropy
versus field curve and the resulting enhanced magnetocaloric effect, which
allows efficient magnetic cooling from quite large temperatures down to very
low ones.Comment: 21 pages, 10 figures, invited paper for a special issue of "Low
Temperature Physics " dedicated to the 70-th anniversary of creation of
concept "antiferromagnetism" in physics of magnetis
- …