838 research outputs found

    The low-frequency response in the surface superconducting state of ZrB12_{12} single crystal}

    Full text link
    The large nonlinear response of a single crystal ZrB12_{12} to an ac field (frequency 40 - 2500 Hz) for H0>Hc2H_0>H_{c2} has been observed. Direct measurements of the ac wave form and the exact numerical solution of the Ginzburg-Landau equations, as well as phenomenological relaxation equation, permit the study of the surface superconducting states dynamics. It is shown, that the low frequency response is defined by transitions between the metastable superconducting states under the action of an ac field. The relaxation rate which determines such transitions dynamics, is found.Comment: 7 pages, 11 figure

    The hard X-ray burst spectrometer event listing 1980-1987

    Get PDF
    This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event

    Rydberg Wave Packets are Squeezed States

    Full text link
    We point out that Rydberg wave packets (and similar ``coherent" molecular packets) are, in general, squeezed states, rather than the more elementary coherent states. This observation allows a more intuitive understanding of their properties; e.g., their revivals.Comment: 7 pages of text plus one figure available in the literature, LA-UR 93-2804, to be published in Quantum Optics, LaTe

    Magnus and Iordanskii Forces in Superfluids

    Full text link
    The total transverse force acting on a quantized vortex in a superfluid is a problem that has eluded a complete understanding for more than three decades. In this letter I propose a remarkably simple argument, somewhat reminiscent of Laughlin's beautiful argument for the quantization of conductance in the quantum Hall effect, to define the superfluid velocity part of the transverse force. This term is found to be −ρsÎșs×vs- \rho_s {\kappa}_s \times {v}_s. Although this result does not seem to be overly controversial, this thermodynamic argument based only on macroscopic properties of the superfluid does offer a robust derivation. A recent publication by Thouless, Ao and Niu has demonstrated that the vortex velocity part of the transverse force in a homogeneous neutral superfluid is given by the usual form ρsÎșs×vV\rho_s {\kappa}_s \times {v}_V. A combination of these two independent results and the required Galilean invariance yields that there cannot be any transverse force proportional to the normal fluid velocity, in apparent conflict with Iordanskii's theory of the transverse force due to phonon scattering by the vortex.Comment: RevTex, 1 Encapsulated Postscript figur

    Grasses continue to trump trees at soil carbon sequestration following herbivore exclusion in a semiarid African savanna

    Get PDF
    Although studies have shown that mammalian herbivores often limit aboveground carbon storage in savannas, their effects on belowground soil carbon storage remain unclear. Using three sets of long‐term, large herbivore exclosures with paired controls, we asked how almost two decades of herbivore removal from a semiarid savanna in Laikipia, Kenya affected aboveground (woody and grass) and belowground soil carbon sequestration, and determined the major source (C3 vs. C4) of belowground carbon sequestered in soils with and without herbivores present. Large herbivore exclusion, which included a diverse community of grazers, browsers, and mixed‐feeding ungulates, resulted in significant increases in grass cover (~22%), woody basal area (~8 m2/ha), and woody canopy cover (31%), translating to a ~8.5 t/ha increase in aboveground carbon over two decades. Herbivore exclusion also led to a 54% increase (20.5 t/ha) in total soil carbon to 30‐cm depth, with ~71% of this derived from C4 grasses (vs. ~76% with herbivores present) despite substantial increases in woody cover. We attribute this continued high contribution of C4 grasses to soil C sequestration to the reduced offtake of grass biomass with herbivore exclusion together with the facilitative influence of open sparse woody canopies (e.g., Acacia spp.) on grass cover and productivity in this semiarid system

    Uncertainty Relations in Deformation Quantization

    Full text link
    Robertson and Hadamard-Robertson theorems on non-negative definite hermitian forms are generalized to an arbitrary ordered field. These results are then applied to the case of formal power series fields, and the Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations in deformation quantization are found. Some conditions under which the uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte

    Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites

    Get PDF
    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species

    Discrimination of biofilm samples using pattern recognition techniques

    Get PDF
    Biofilms are complex aggregates formed by microorganisms such as bacteria, fungi and algae, which grow at the interfaces between water and natural or artificial materials. They are actively involved in processes of sorption and desorption of metal ions in water and reflect the environmental conditions in the recent past. Therefore, biofilms can be used as bioindicators of water quality. The goal of this study was to determine whether the biofilms, developed in different aquatic systems, could be successfully discriminated using data on their elemental compositions. Biofilms were grown on natural or polycarbonate materials in flowing water, standing water and seawater bodies. Using an unsupervised technique such as principal component analysis (PCA) and several supervised methods like classification and regression trees (CART), discriminant partial least squares regression (DPLS) and uninformative variable elimination–DPLS (UVE-DPLS), we could confirm the uniqueness of sea biofilms and make a distinction between flowing water and standing water biofilms. The CART, DPLS and UVE-DPLS discriminant models were validated with an independent test set selected either by the Kennard and Stone method or the duplex algorithm. The best model was obtained from CART with 100% correct classification rate for the test set designed by the Kennard and Stone algorithm. With CART, one variable describing the Mg content in the biofilm water phase was found to be important for the discrimination of flowing water and standing water biofilms

    Large emergency-response exercises: qualitative characteristics - a survey

    Get PDF
    Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized

    Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy

    Full text link
    Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.Comment: 22 pages, RevTeX, four .eps figures, to appear in Found. Phys. Lett. Vol. 17, Dec. 200
    • 

    corecore