266 research outputs found

    On the Radial Distribution of White Dwarfs in the Globular Cluster NGC 6397

    Full text link
    We have examined the radial distribution of white dwarfs over a single HST/ACS field in the nearby globular cluster NGC 6397. In relaxed populations, such as in a globular cluster, stellar velocity dispersion, and hence radial distribution, is directly dependent on stellar masses. The progenitors of very young cluster white dwarfs had a mass of ~0.8 solar masses, while the white dwarfs themselves have a mass of ~0.5 solar masses. We thus expect young white dwarfs to have a concentrated radial distribution (like that of their progenitors) that becomes more extended over several relaxation times to mimic that of ~0.5 solar mass main-sequence stars. However, we observe young white dwarfs to have a significantly extended radial distribution compared to both the most massive main sequence stars in the cluster and also to old white dwarfs.Comment: 13 pages including 1 table and 3 figures. Accepted for publication in the MNRAS Letter

    A Parallel Incremental Learning Algorithm for Neural Networks with Fault Tolerance

    No full text
    URL : http://vecpar.fe.up.pt/2008/papers/46.pdfInternational audienceThis paper presents a parallel and fault tolerant version of an incremental learning algorithm for feed-forward neural networks used as function approximators. It has been shown in previous works that our incremental algorithm builds networks of reduced size while providing high quality approximations for real data sets. However, for very large sets, the use of our learning process on a single machine may be quite long and even sometimes impossible, due to memory limitations. The parallel algorithm presented in this paper is usable in any parallel system, and in particular, with large dynamical systems such as clusters and grids in which faults may occur. Finally, the quality and performances (without and with faults) of that algorithm are experimentally evaluated

    NGC 2419, M92, and the Age Gradient in the Galactic Halo

    Get PDF
    The WFPC2 camera on HST has been used to obtain deep main sequence photometry of the low-metallicity ([Fe/H]=-2.14), outer-halo globular cluster NGC 2419. A differential fit of the NGC 2419 CMD to that of the similarly metal-poor \ standard cluster M92 shows that they have virtually identical principal sequences and thus the same age to well within 1 Gyr. Since other low-metallicity clusters throughout the Milky Way halo have this same age to within the 1-Gyr precision of the differential age technique, we conclude that the earliest star (or globular cluster) formation began at essentially the same time everywhere in the Galactic halo throughout a region now almost 200 kpc in diameter. Thus for the metal-poorest clusters in the halo there is no detectable age gradient with Galactocentric distance. To estimate the absolute age of NGC 2419 and M92, we fit newly computed isochrones transformed through model-atmosphere calculations to the (M_V,V-I) plane, with assumed distance scales that represent the range currently debated in the literature. Unconstrained isochrone fits give M_V(RR) = 0.55 \pm 0.06 and a resulting age of 14 to 15 Gyr. Incorporating the full effects of helium diffusion would further reduce this estimate by about 1 Gyr. A distance scale as bright as M_V(RR) = 0.15 for [Fe/H] = -2, as has recently been reported, would leave several serious problems which have no obvious solution in the context of current stellar models.Comment: 32 pages, aastex, 9 postscript figures; accepted for publication in AJ, September 1997. Also available by e-mail from [email protected]

    An Age Difference of 2 Gyr between a Metal-Rich and a Metal-Poor Globular Cluster

    Full text link
    Globular clusters trace the formation history of the spheroidal components of both our Galaxy and others, which represent the bulk of star formation over the history of the universe. They also exhibit a range of metallicities, with metal-poor clusters dominating the stellar halo of the Galaxy, and higher metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and later swallowed along with their original host galaxies, and which were formed in situ. Here we present an age determination of the metal-rich globular cluster 47 Tucanae by fitting the properties of the cluster white dwarf population, which implies an absolute age of 9.9 (0.7) Gyr at 95% confidence. This is about 2.0 Gyr younger than inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than the metal-poor halo clusters like NGC 6397.Comment: Main Article: 10 pages, 4 figures; Supplementary Info 15 pages, 5 figures. Nature, Aug 1, 201

    The Space Motion of the Globular Cluster NGC 6397

    Get PDF
    As a by-product of high-precision, ultra-deep stellar photometry in the Galactic globular cluster NGC 6397 with the Hubble Space Telescope, we are able to measure a large population of background galaxies whose images are nearly point-like. These provide an extragalactic reference frame of unprecedented accuracy, relative to which we measure the most accurate absolute proper motion ever determined for a globular cluster. We find mu_alpha = 3.56 +/- 0.04 mas/yr and mu_delta = -17.34 +/- 0.04 mas/yr. We note that the formal statistical errors quoted for the proper motion of NGC 6397 do not include possible unavoidable sources of systematic errors, such as cluster rotation. These are very unlikely to exceed a few percent. We use this new proper motion to calculate NGC 6397's UVW space velocity and its orbit around the Milky Way, and find that the cluster has made frequent passages through the Galactic disk.Comment: 5 pages including 3 figures, accepted for publication in the Astrophysical Journal Letters. Very minor changes in V2. typos fixe

    The Galactic Inner Halo: Searching for White Dwarfs and Measuring the Fundamental Galactic Constant, Vo/Ro

    Full text link
    We establish an extragalactic, zero-motion frame of reference within the deepest optical image of a globular star cluster, an HST 123-orbit exposure of M4 (GO 8679, cycle 9). The line of sight beyond M4 (l,b (deg) = 351,16) intersects the inner halo (spheroid) of our Galaxy at a tangent-point distance of 7.6 kpc (for Ro = 8 kpc). We isolate these spheroid stars from the cluster based on their proper motions over the 6-year baseline between these and previous epoch HST data (GO 5461, cycle 4). Distant background galaxies are also found on the same sight line using image-morphology techniques. This fixed reference frame allows us to independently determine the fundamental Galactic constant, Vo/Ro = 25.3 +/- 2.6 km/s/kpc, thus providing a velocity of the Local Standard of Rest, v = 202.7 +/- 24.7 km/s for Ro = 8.0 +/- 0.5 kpc. Secondly, the galaxies allow a direct measurement of M4's absolute proper motion, mu_total = 22.57 +/- 0.76 mas/yr, in excellent agreement with recent studies. The clear separation of galaxies from stars in these deep data also allow us to search for inner-halo white dwarfs. We model the conventional Galactic contributions of white dwarfs along our line of sight and predict 7.9 (thin disk), 6.3 (thick disk) and 2.2 (spheroid) objects to the limiting magnitude at which we can clearly delineate stars from galaxies (V = 29). An additional 2.5 objects are expected from a 20% white dwarf dark halo consisting of 0.5 Mo objects, 70% of which are of the DA type. After considering the kinematics and morphology of the objects in our data set, we find the number of white dwarfs to be consistent with the predictions for each of the conventional populations. However, we do not find any evidence for dark halo white dwarfs.Comment: 31 pages, including 6 diagrams and 2 tables. Accepted for publication in Ap

    White Dwarfs in Globular Clusters: HST Observations of M4

    Get PDF
    Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51(±0.03 \pm 0.03)M⊙_{\odot}, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters and hence constrain the age of the Universe.Comment: 46 pages, latex, no figures included, figures available at ftp://ftp.astro.ubc.ca/pub/richer/wdfig.uu size 2.7Mb. To be published in the Astrophysical Journa

    Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris)

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 5 (2014): 217, doi:10.3389/fphys.2014.00217.Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.Funding was provided by the Baylor University Faculty Research Investment Program (StephenJ.Trumble)

    An Anti-Glitch in a Magnetar

    Get PDF
    Magnetars are neutron stars showing dramatic X-ray and soft Îł\gamma-ray outbursting behaviour that is thought to be powered by intense internal magnetic fields. Like conventional young neutron stars in the form of radio pulsars, magnetars exhibit "glitches" during which angular momentum is believed to be transferred between the solid outer crust and the superfluid component of the inner crust. Hitherto, the several hundred observed glitches in radio pulsars and magnetars have involved a sudden spin-up of the star, due presumably to the interior superfluid rotating faster than the crust. Here we report on X-ray timing observations of the magnetar 1E 2259+586 which we show exhibited a clear "anti-glitch" -- a sudden spin down. We show that this event, like some previous magnetar spin-up glitches, was accompanied by multiple X-ray radiative changes and a significant spin-down rate change. This event, if of origin internal to the star, is unpredicted in models of neutron star spin-down and is suggestive of differential rotation in the neutron star, further supporting the need for a rethinking of glitch theory for all neutron stars

    Weak lensing mass reconstructions of the ESO Distant Cluster Survey

    Full text link
    We present weak lensing mass reconstructions for the 20 high-redshift clusters i n the ESO Distant Cluster Survey. The weak lensing analysis was performed on deep, 3-color optical images taken with VLT/FORS2, using a composite galaxy catalog with separate shape estimators measured in each passband. We find that the EDisCS sample is composed primarily of clusters that are less massive than t hose in current X-ray selected samples at similar redshifts, but that all of the fields are likely to contain massive clusters rather than superpositions of low mass groups. We find that 7 of the 20 fields have additional massive structures which are not associated with the clusters and which can affect the weak lensing mass determination. We compare the mass measurements of the remaining 13 clusters with luminosity measurements from cluster galaxies selected using photometric redshifts and find evidence of a dependence of the cluster mass-to-light ratio with redshift. Finally we determine the noise level in the shear measurements for the fields as a function of exposure time and seeing and demonstrate that future ground-based surveys which plan to perform deep optical imaging for use in weak lensing measurements must achieve point-spread functions smaller than a median of 0.6" FWHM.Comment: 35 pages, 24 figures, accepted to A&A, a version with better figure resolution can be found at http://www.mpa-garching.mpg.de/ediscs/papers.htm
    • …
    corecore