11,842 research outputs found

    ac Stark shift and multiphoton-like resonances in low-frequency driven optical lattices

    Full text link
    We suggest that Bose-Einstein condensates in optical lattices subjected to ac forcing with a smooth envelope may provide detailed experimental access to multiphoton-like transitions between ac-Stark-shifted Bloch bands. Such transitions correspond to resonances described theoretically by avoided quasienergy crossings. We show that the width of such anticrossings can be inferred from measurements involving asymmetric pulses. We also introduce a pulse tracking strategy for locating the particular driving amplitudes for which resonances occur. Our numerical calculations refer to a currently existing experimental set-up [Haller et al., PRL 104, 200403 (2010)].Comment: 5 pages, 6 figure

    Aperiodic nano-photonic design

    Full text link
    The photon scattering properties of aperiodic nano-scale dielectric structures can be tailored to closely match a desired response by using adaptive algorithms for device design. We show that broken symmetry of aperiodic designs provides access to device functions not available to conventional periodic photonic crystal structures.Comment: 23 pages, LaTex, 8 postscript figure

    Drude weight and total optical weight in a t-t'-J model

    Full text link
    We study the Drude weight D and the total optical weight K for a t-t'-J model on a square lattice that exhibits a metallic phase-modulated antiferromagnetic ground state close to half-filling. Within a suitable 1/N expansion that includes leading quantum-fluctuation effects, D and K are found to increase linearly with small hole doping away from the Mott metal-insulator transition point at half-filling. The slow zero-sound velocity near the latter transition identifies with the velocity of the lower-energy branch of the twofold excitation spectrum. At higher doping values, D and K eventually saturate and then start to decrease. These features are in qualitative agreement with optical conductivity measurements in doped antiferromagnets.Comment: 7 pages, REVTEX file (3 Postscript figures). To appear in J. Phys.: Condens. Mattte

    Ascaroside Signaling Is Widely Conserved among Nematodes

    Get PDF
    Background: Nematodes are among the most successful animals on earth and include important human pathogens, yet little is known about nematode pheromone systems. A group of small molecules called ascarosides has been found to mediate mate finding, aggregation, and developmental diapause in Caenorhabditis elegans, but it is unknown whether ascaroside signaling exists outside of the genus Caenorhabditis. Results: To determine whether ascarosides are used as signaling molecules by other nematode species, we performed a mass spectrometry-based screen for ascarosides in secretions from a variety of both free-living and parasitic (plant, insect, and animal) nematodes. We found that most of the species analyzed, including nematodes from several different clades, produce species-specific ascaroside mixtures. In some cases, ascaroside biosynthesis patterns appear to correlate with phylogeny, whereas in other cases, biosynthesis seems to correlate with lifestyle and ecological niche. We further show that ascarosides mediate distinct nematode behaviors, such as retention, avoidance, and long-range attraction, and that different nematode species respond to distinct, but overlapping, sets of ascarosides. Conclusions: Our findings indicate that nematodes utilize a conserved family of signaling molecules despite having evolved to occupy diverse ecologies. Their structural features and level of conservation are evocative of bacterial quorum sensing, where acyl homoserine lactones (AHLs) are both produced and sensed by many species of gram-negative bacteria. The identification of species-specific ascaroside profiles may enable pheromone-based approaches to interfere with reproduction and survival of parasitic nematodes, which are responsible for significant agricultural losses and many human diseases worldwide

    The Expected Perimeter in Eden and Related Growth Processes

    Full text link
    Following Richardson and using results of Kesten on First-passage percolation, we obtain an upper bound on the expected perimeter in an Eden Growth Process. Using results of the author from a problem in Statistical Mechanics, we show that the average perimeter of the lattice animals resulting from a very natural family of "growth histories" does not obey a similar bound.Comment: 11 page

    Conductivity and Atomic Structure of Isolated Multiwalled Carbon Nanotubes

    Full text link
    We report associated high resolution transmission electron microscopy (HRTEM) and transport measurements on a series of isolated multiwalled carbon nanotubes. HRTEM observations, by revealing relevant structural features of the tubes, shed some light on the variety of observed transport behaviors, from semiconducting to quasi-metallic type. Non Ohmic behavior is observed for certain samples which exhibit "bamboo like" structural defects. The resistance of the most conducting sample, measured down to 20 mK, exhibits a pronounced maximum at 0.6 K and strong positive magnetoresistance.Comment: 4 pages, 4 eps figure

    Towards a Macroscopic Modelling of the Complexity in Traffic Flow

    Full text link
    We present a macroscopic traffic flow model that extends existing fluid-like models by an additional term containing the second derivative of the safe velocity. Two qualitatively different shapes of the safe velocity are explored: a conventional Fermi-type function and a function exhibiting a plateau at intermediate densities. The suggested model shows an extremely rich dynamical behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.

    Dynamic Adaptation of Joint Transmission Power and Contention Window in VANET

    Get PDF
    In this paper, we propose an algorithm for joint adaptation of transmission power and contention window to improve the performance of vehicular network in a cross layer approach. The high mobility of vehicles in vehicular communication results in the change in topology of the Vehicular Ad-hoc Network (VANET) dynamically, and the communication link between two vehicles might remain active only for short duration of time. In order for VANET to make a connection for long time and to mitigate adverse effects due to high and fixed transmission power, the proposed algorithm adapts transmission power dynamically based on estimated local traffic density. In addition to that, the prioritization of messages according to their urgency is performed for timely propagation of high priority messages to the destination region. In this paper, we incorporate the contention based MAC protocol 802.11e enhanced distributed channel access (EDCA) mechanism to implement a priority-based vehicle-to-vehicle (V2V) communication. Simulation results show that the proposed algorithm is successful in getting better throughput with lower average end-to-end delay than the algorithm with static/default parameters
    corecore