493 research outputs found

    Composite video and graphics display for camera viewing systems in robotics and teleoperation

    Get PDF
    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera

    Composite video and graphics display for multiple camera viewing system in robotics and teleoperation

    Get PDF
    A system for real-time video image display for robotics or remote-vehicle teleoperation is described that has at least one robot arm or remotely operated vehicle controlled by an operator through hand-controllers, and one or more television cameras and optional lighting element. The system has at least one television monitor for display of a television image from a selected camera and the ability to select one of the cameras for image display. Graphics are generated with icons of cameras and lighting elements for display surrounding the television image to provide the operator information on: the location and orientation of each camera and lighting element; the region of illumination of each lighting element; the viewed region and range of focus of each camera; which camera is currently selected for image display for each monitor; and when the controller coordinate for said robot arms or remotely operated vehicles have been transformed to correspond to coordinates of a selected or nonselected camera

    Graphic overlays in high-precision teleoperation: Current and future work at JPL

    Get PDF
    In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated

    Contraction blockers for graphs with forbidden induced paths.

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pℓ-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs

    Contraction blockers for graphs with forbidden induced paths

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph be reduced by at least d for some integer d via at most k edge contractions for some given integer k? We examine three graph parameters: the chromatic number, clique number and independence number. For each of these graph parameters we show that, when d is part of the input, this problem is polynomial-time solvable on P4-free graphs and NP-complete as well as W[1]-hard, with parameter d, for split graphs. As split graphs form a subclass of P5-free graphs, both results together give a complete complexity classification for Pℓ-free graphs. The W[1]-hardness result implies that it is unlikely that the problem is fixed-parameter tractable for split graphs with parameter d. But we do show, on the positive side, that the problem is polynomial-time solvable, for each parameter, on split graphs if d is fixed, i.e., not part of the input. We also initiate a study into other subclasses of perfect graphs, namely cobipartite graphs and interval graphs

    Reducing the clique and chromatic number via edge contractions and vertex deletions.

    Get PDF
    We consider the following problem: can a certain graph parameter of some given graph G be reduced by at least d, for some integer d, via at most k graph operations from some specified set S, for some given integer k? As graph parameters we take the chromatic number and the clique number. We let the set S consist of either an edge contraction or a vertex deletion. As all these problems are NP-complete for general graphs even if d is fixed, we restrict the input graph G to some special graph class. We continue a line of research that considers these problems for subclasses of perfect graphs, but our main results are full classifications, from a computational complexity point of view, for graph classes characterized by forbidding a single induced connected subgraph H

    Euglycemic Diabetic Ketoacidosis: A Potential Complication of Treatment With Sodium–Glucose Cotransporter 2 Inhibition

    Get PDF
    Sodium–glucose cotransporter 2 (SGLT-2) inhibitors are the most recently approved antihyperglycemic medications. We sought to describe their association with euglycemic diabetic ketoacidosis (euDKA) in hopes that it will enhance recognition of this potentially life-threatening complication

    Intercomparison of desert dust optical depth from satellite measurements

    Get PDF
    This work provides a comparison of satellite retrievalsof Saharan desert dust aerosol optical depth (AOD)during a strong dust event through March 2006. In this event,a large dust plume was transported over desert, vegetated,and ocean surfaces. The aim is to identify the differencesbetween current datasets. The satellite instruments consideredare AATSR, AIRS, MERIS, MISR, MODIS, OMI,POLDER, and SEVIRI. An interesting aspect is that the differentalgorithms make use of different instrument characteristicsto obtain retrievals over bright surfaces. These includemulti-angle approaches (MISR, AATSR), polarisationmeasurements (POLDER), single-view approaches using solarwavelengths (OMI, MODIS), and the thermal infraredspectral region (SEVIRI, AIRS). Differences between instruments,together with the comparison of different retrievalalgorithms applied to measurements from the same instrument,provide a unique insight into the performance andcharacteristics of the various techniques employed. As wellas the intercomparison between different satellite products,the AODs have also been compared to co-located AERONETdata. Despite the fact that the agreement between satellite andAERONET AODs is reasonably good for all of the datasets,there are significant differences between them when comparedto each other, especially over land. These differencesare partially due to differences in the algorithms, such as assumptionsabout aerosol model and surface properties. However,in this comparison of spatially and temporally averageddata, it is important to note that differences in sampling, relatedto the actual footprint of each instrument on the heterogeneousaerosol field, cloud identification and the qualitycontrol flags of each dataset can be an important issue

    PARAGON - An integrated approach for characterizing aerosol climate impacts and environmental interactions

    No full text
    Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the long-term benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, inter-agency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air qualit

    Two different charge-separation pathways in photosystem II

    Get PDF
    Charge separation is an essential step in the conversion of solar energy into chemical energy in photosynthesis. To investigate this process, we performed transient absorption experiments at 77 K with various excitation conditions on the isolated Photosystem II reaction center preparations from spinach. The results have been analyzed by global and target analysis and demonstrate that at least two different excited states, (Ch
    corecore