5,279 research outputs found

    Locked and Unlocked Chains of Planar Shapes

    Full text link
    We extend linkage unfolding results from the well-studied case of polygonal linkages to the more general case of linkages of polygons. More precisely, we consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are hinged together sequentially at rotatable joints. Our goal is to characterize the families of planar shapes that admit locked chains, where some configurations cannot be reached by continuous reconfiguration without self-intersection, and which families of planar shapes guarantee universal foldability, where every chain is guaranteed to have a connected configuration space. Previously, only obtuse triangles were known to admit locked shapes, and only line segments were known to guarantee universal foldability. We show that a surprisingly general family of planar shapes, called slender adornments, guarantees universal foldability: roughly, the distance from each edge along the path along the boundary of the slender adornment to each hinge should be monotone. In contrast, we show that isosceles triangles with any desired apex angle less than 90 degrees admit locked chains, which is precisely the threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof details. (Fixed crash-induced bugs in the abstract.

    Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy

    Get PDF
    © 2014 Author(s). Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe) from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value-furthermore, data on taxon-specific responses are almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR) microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate/silicic acid and carbohydrates. In contrast to some previous studies, silicate/silicic acid levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements, highlighting the need for further research into taxon-specific phenotypic responses of phytoplankton to environmental change

    Deep Learning for Automated Boundary Detection and Segmentation in Organ Donation Photography

    Get PDF
    Background: Medical photography is ubiquitous and plays an increasingly important role in the fields of medicine and surgery. Any assessment of these photographs by computer vision algorithms requires first that the area of interest can accurately be delineated from the background. We aimed to develop deep learning segmentation models for kidney and liver retrieval photographs where accurate automated segmentation has not yet been described. Methods: Two novel deep learning models (Detectron2 and YoloV8) were developed using transfer learning and compared against existing tools for background removal (macBGRemoval, remBGisnet, remBGu2net). Anonymized photograph datasets comprised training/internal validation sets (821 kidney and 400 liver images) and external validation sets (203 kidney and 208 liver images). Each image had two segmentation labels: whole organ and clear view (parenchyma only). Intersection over Union (IoU) was the primary outcome, as the recommended metric for assessing segmentation performance. Results: In whole kidney segmentation, Detectron2 and YoloV8 outperformed other models with internal validation IoU of 0.93 and 0.94, and external validation IoU of 0.92 and 0.94, respectively. Other methods—macBGRemoval, remBGisnet, and remBGu2net—scored lower, with highest internal validation IoU at 0.54 and external validation at 0.59. Similar results were observed in liver segmentation, where Detectron2 and YoloV8 both showed internal validation IoU of 0.97 and external validation of 0.92 and 0.91, respectively. The other models showed a maximum internal validation and external validation IoU of 0.89 and 0.59 respectively. All image segmentation tasks with Detectron2 and YoloV8 completed within 0.13 to 1.5 seconds per image. Conclusions: Accurate, rapid, and automated image segmentation in the context of surgical photography is possible with open-source deep-learning software. These outperform existing methods, and could impact the field of surgery, enabling similar advancements seen in other areas of medical computer vision

    X-Ray Groups of Galaxies in the Aegis Deep and Wide Fields

    Full text link
    We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800-ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. The groups span the redshift range z0.0661.544z\sim0.066-1.544 and virial mass range M2001.34×10131.33×1014MM_{200}\sim1.34\times 10^{13}-1.33\times 10^{14}M_\odot. For the 49 extended sources which lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of cut. A velocity dispersion based virial radius can more overestimate velocity dispersion in comparison to X-ray based virial radius for low mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, overestimation of velocity dispersion can be created in case of existence of significant substructure and also compactness in X-ray emission which mostly occur in low mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method (VDM) for DEEP2 data in this field.Comment: Accepted for publication in AP

    Complementary and alternative medical therapies for chronic low back pain: What treatments are patients willing to try?

    Get PDF
    BACKGROUND: Although back pain is the most common reason patients use complementary and alternative medical (CAM) therapies, little is known about the willingness of primary care back pain patients to try these therapies. As part of an effort to refine recruitment strategies for clinical trials, we sought to determine if back pain patients are willing to try acupuncture, chiropractic, massage, meditation, and t'ai chi and to learn about their knowledge of, experience with, and perceptions about each of these therapies. METHODS: We identified English-speaking patients with diagnoses consistent with chronic low back pain using automated visit data from one health care organization in Boston and another in Seattle. We were able to confirm the eligibility status (i.e., current low back pain that had lasted at least 3 months) of 70% of the patients with such diagnoses and all eligible respondents were interviewed. RESULTS: Except for chiropractic, knowledge about these therapies was low. Chiropractic and massage had been used by the largest fractions of respondents (54% and 38%, respectively), mostly for back pain (45% and 24%, respectively). Among prior users of specific CAM therapies for back pain, massage was rated most helpful. Users of chiropractic reported treatment-related "significant discomfort, pain or harm" more often (23%) than users of other therapies (5–16%). Respondents expected massage would be most helpful (median of 7 on a 0 to 10 scale) and meditation least helpful (median of 3) in relieving their current pain. Most respondents indicated they would be "very likely" to try acupuncture, massage, or chiropractic for their back pain if they did not have to pay out of pocket and their physician thought it was a reasonable treatment option. CONCLUSIONS: Most patients with chronic back pain in our sample were interested in trying therapeutic options that lie outside the conventional medical spectrum. This highlights the need for additional studies evaluating their effectiveness and suggests that researchers conducting clinical trials of these therapies may not have difficulties recruiting patients
    corecore