374 research outputs found
Kinship Index Variations among Populations and Thresholds for Familial Searching
Current familial searching strategies are developed primarily based on autosomal STR loci, since most of the offender profiles in the forensic DNA databases do not contain Y-STR or mitochondrial DNA data. There are generally two familial searching methods, Identity-by-State (IBS) based methods or kinship index (KI) based methods. The KI based method is an analytically superior method because the allele frequency information is considered as opposed to solely allele counting. However, multiple KIs should be calculated if the unknown forensic profile may be attributed to multiple possible relevant populations. An important practical issue is the KI threshold to select for limiting the list of candidates from a search. There are generally three strategies of setting the KI threshold for familial searching: (1) SWGDAM recommendation 6; (2) minimum KI≥KI threshold; and (3) maximum KI≥KI threshold. These strategies were evaluated and compared by using both simulation data and empirical data. The minimum KI will tend to be closer to the KI appropriate for the population of which the forensic profile belongs. The minimum KI≥KI threshold performs better than the maximum KI≥KI threshold. The SWGDAM strategy may be too stringent for familial searching with large databases (e.g., 1 million or more profiles), because its KI thresholds depend on the database size and the KI thresholds of large databases have a higher probability to exclude true relatives than smaller databases. Minimum KI≥KI threshold strategy is a better option, as it provides the flexibility to adjust the KI threshold according to a pre-determined number of candidates or false positive/negative rates. Joint use of both IBS and KI does not significantly reduce the chance of including true relatives in a candidate list, but does provide a higher efficiency of familial searching
Global genetic variation of select opiate metabolism genes in self-reported healthy individuals
CYP2D6 is a key pharmacogene encoding an enzyme impacting poor, intermediate, extensive and ultrarapid phase I metabolism of many marketed drugs. The pharmacogenetics of opiate drug metabolism is particularly interesting due to the relatively high incidence of addiction and overdose. Recently, trans-acting opiate metabolism and analgesic response enzymes (UGT2B7, ABCB1, OPRM1 and COMT) have been incorporated into pharmacogenetic studies to generate more comprehensive metabolic profiles of patients. With use of massively parallel sequencing, it is possible to identify additional polymorphisms that fine tune, or redefine, previous pharmacogenetic findings, which typically rely on targeted approaches. The 1000 Genomes Project data were analyzed to describe population genetic variation and statistics for these five genes in self-reported healthy individuals in five global super- and 26 sub-populations. Findings on the variation of these genes in various populations expand baseline understanding of pharmacogenetically relevant polymorphisms for future studies of affected cohorts.Peer reviewe
Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles
BACKGROUND: Technological advances have enabled the analysis of very small amounts of DNA in forensic cases. However, the DNA profiles from such evidence are frequently incomplete and can contain contributions from multiple individuals. The complexity of such samples confounds the assessment of the statistical weight of such evidence. One approach to account for this uncertainty is to use a likelihood ratio framework to compare the probability of the evidence profile under different scenarios. While researchers favor the likelihood ratio framework, few open-source software solutions with a graphical user interface implementing these calculations are available for practicing forensic scientists. RESULTS: To address this need, we developed Lab Retriever, an open-source, freely available program that forensic scientists can use to calculate likelihood ratios for complex DNA profiles. Lab Retriever adds a graphical user interface, written primarily in JavaScript, on top of a C++ implementation of the previously published R code of Balding. We redesigned parts of the original Balding algorithm to improve computational speed. In addition to incorporating a probability of allelic drop-out and other critical parameters, Lab Retriever computes likelihood ratios for hypotheses that can include up to four unknown contributors to a mixed sample. These computations are completed nearly instantaneously on a modern PC or Mac computer. CONCLUSIONS: Lab Retriever provides a practical software solution to forensic scientists who wish to assess the statistical weight of evidence for complex DNA profiles. Executable versions of the program are freely available for Mac OSX and Windows operating systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0740-8) contains supplementary material, which is available to authorized users
Microbial DNA fingerprinting of human fingerprints: dynamic colonization of fingertip microflora challenges human host inferences for forensic purposes
Human fingertip microflora is transferred to touched objects and may provide forensically relevant information on individual hosts, such as on geographic origins, if endogenous microbial skin species/strains would be retrievable from physical fingerprints and would carry geographically restricted DNA diversity. We tested the suitability of physical fingerprints for revealing human host information, with geographic inference as example, via microbial DNA fingerprinting. We showed that the transient exogenous fingertip microflora is frequently different from the resident endogenous bacteria of the same individuals. In only 54% of the experiments, the DNA analysis of the transient fingertip microflora allowed the detection of defined, but often not the major, elements of the resident microflora. Although we found microbial persistency in certain individuals, time-wise variation of transient and resident microflora within individuals was also observed when resampling fingerprints after 3 weeks. While microbial species differed considerably in their frequency spectrum between fingerprint samples from volunteers in Europe and southern Asia, there was no clear geographic distinction between Staphylococcus strains in a cluster analysis, although bacterial genotypes did not overlap between both continental regions. Our results, though limited in quantity, clearly demonstrate that the dynamic fingerprint microflora challenges human host inferences for forensic purposes including geographic ones. Overall, our results suggest that human fingerprint microflora is too dynamic to allow for forensic marker developments for retrieving human information
Comparison of three methods of DNA extraction from human bones with different degrees of degradation
There is a necessity for deceased identification as a result of many accidents and sometimes bones are the only accessible source of DNA. So far, a universal method that allows for extraction of DNA from materials at different stages of degradation does not exist. The aims of this study were: the comparison of three methods of DNA extraction from bones with different degree of degradation and an evaluation of the usefulness of these methods in forensic genetics. The efficiency of DNA extraction, the degree of extract contamination by polymerase chain reaction (PCR) inhibitors and the possibility of determining the STR loci profile were especially being compared. Nuclear DNA from bones at different states of degradation was isolated using three methods: classical, organic phenol–chloroform extraction, DNA extraction from crystal aggregates and extraction by total demineralisation. Total demineralisation is the best method for most cases of DNA extraction from bones, although it does not provide pure DNA. DNA extraction from aggregates removes inhibitors much better and is also a good method of choice when identity determination of exhumed remains is necessary. In the case of not buried bones (remains found outside) total demineralisation or phenol–chloroform protocols are more efficient for successful DNA extraction
Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR® Yfiler® PCR amplification kit
The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpFlSTR® Yfiler® polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730–1,764 DNA-confirmed father–son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son’s birth) of fathers with mutations was with 34.40 (±11.63) years higher than that of fathers without ones at 30.32 (±10.22) years, a difference that is highly statistically significant (p < 0.001). A Poisson-based modeling revealed that the Y-STR mutation rate increased with increasing father’s age on a statistically significant level (α = 0.0294, 2.5% quantile = 0.0001). From combining our data with those previously published, considering all together 135,212 meiotic events and 331 mutations, we conclude for the Yfiler Y-STRs that (1) none had a mutation rate of >1%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father–son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses
Mitochondrial echoes of first settlement and genetic continuity in El Salvador
Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador.
Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas.
Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade
- …