130 research outputs found
Recommended from our members
Making Sense of Oil Stamp Saving Schemes
An increasing number of households in Northern Ireland has started to collect oil stamps in recent years - i.e. small pieces of paper which can be purchased at specified outlets, collected on an oil stamps savings card, and used to pay in full or part for one's oil bill. In this paper, we explore why this is. After ruling out high costs associated with more conventional savings vehicles (such as bank accounts) and the notion that oil stamps serve some purpose other than saving for heating oil as possible explanations, we test two main hypotheses: i) oil stamps as 'self-control' mechanism and ii) oil stamps as 'other-control' mechanism. While we find little evidence for the first hypothesis, we do find evidence for the second one. More specifically, we find that collecting oil stamps is strongly correlated with differences in views among household members with regard to how much priority to give to saving for heating oil. To rule out 'salience effects' as an alternative explanation, we test whether oil stamps increase households' savings performance. We find that they do
The non-structural protein 5A (NS5A) of hepatitis c virus interacts with the SH3 domain of human Bin1 using non-canonical binding sites
The hepatitis C virus (HCV) is a major human pathogen that causes severe diseases such as chronic hepatitis, liver cirrhosis and finally hepatocellular carcinoma. Although no enzymatic activity could be attributed yet to the HCV non-structural protein 5A (NS5A), it is indispensable for viral replication and particle assembly. Furthermore, it is associated with a variety of cellular pathways, although their relevance for viral pathogenesis still has to be elucidated. To fulfil its function NS5A interacts with a large number of different proteins including both viral and human ones. NS5A is organized into three domains, which are connected via two low complexity sequences (LCS). The first domain is highly conserved among different HCV genotypes and forms a well-defined globular structure [1]. The domains 2 (D2) and 3 (D3) are less conserved and intrinsically disordered. Nonetheless, three segments in LCS-I and D2 show significant propensities to adopt a-helical structures as could be shown by nuclear magnetic resonance (NMR) chemical shift and 15 N relaxation data [2]. The LCS-II connecting D2 and D3 contains two directly neighbored class II PxxP-motifs, which are important for interactions with Src homology 3 (SH3) domains. SH3 domains mediate protein-protein interactions, often via binding to polyproline II helices. Recent studies also revealed alternative binding mechanisms, mainly involving helical motifs and positively charged amino acid residues. The SH3 domain of the bridging integrator 1 (Bin1) is known to interact with NS5A not only via its PxxP-motifs, but also via two non-canonical binding sites, which will be further described here [3]
The non-structural protein 5A (NS5A) of hepatitis C virus interacts with the SH3 domain of human Bin1 using non-canonical binding sites
The hepatitis C virus (HCV) is a major human pathogen that causes severe diseases such as chronic hepatitis, liver cirrhosis and finally hepatocellular carcinoma. Although no enzymatic activity could be attributed yet to the HCV non-structural protein 5A (NS5A), it is indispensable for viral replication and particle assembly. Furthermore, it is associated with a variety of cellular pathways, although their relevance for viral pathogenesis still has to be elucidated. To fulfil its function NS5A interacts with a large number of different proteins including both viral and human ones. NS5A is organized into three domains, which are connected via two low complexity sequences (LCS). The first domain is highly conserved among different HCV genotypes and forms a well-defined globular structure [1]. The domains 2 (D2) and 3 (D3) are less conserved and intrinsically disordered. Nonetheless, three segments in LCS-I and D2 show significant propensities to adopt a-helical structures as could be shown by nuclear magnetic resonance (NMR) chemical shift and 15 N relaxation data [2]. The LCS-II connecting D2 and D3 contains two directly neighbored class II PxxP-motifs, which are important for interactions with Src homology 3 (SH3) domains. SH3 domains mediate protein-protein interactions, often via binding to polyproline II helices. Recent studies also revealed alternative binding mechanisms, mainly involving helical motifs and positively charged amino acid residues. The SH3 domain of the bridging integrator 1 (Bin1) is known to interact with NS5A not only via its PxxP-motifs, but also via two non-canonical binding sites, which will be further described here [3]
Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle
Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a 13C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4′ carbon position, such that the C2′ and C3′ positions suffer from multiplet splitting but the C5′ position remains singlet and the C1′ position shows a small amount of residual C1′–C2′ coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with 13C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5′ position (~90%) that makes it particularly attractive for NMR applications involving CH2-TROSY modules without the need for decoupling the C4′ carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed, which indicates this approach of using nucleotides obtained from DL323 E. coli will be applicable to high molecular weight RNA systems
Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens
This is the final version of the article. Available from the publisher via the DOI in this record.Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.
Results:
We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.
Conclusions:
Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.This article is a joint effort of the working group TRANSBEE and an
outcome of two workshops kindly supported by sDiv, the Synthesis
Centre for Biodiversity Sciences within the German Centre for Integrative
Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Science
Foundation (FZT 118). New datasets were performed thanks to the Insect
Pollinators Initiative (IPI grant BB/I000100/1 and BB/I000151/1), with participation
of the UK-USA exchange funded by the BBSRC BB/I025220/1 (datasets #4,
11 and 14). The IPI is funded jointly by the Biotechnology and Biological
Sciences Research Council, the Department for Environment, Food and Rural
Affairs, the Natural Environment Research Council, the Scottish Government
and the Wellcome Trust, under the Living with Environmental Change
Partnershi
Biomass production of site selective 13C/15N nucleotides using wild type and a transketolase E. coli mutant for labeling RNA for high resolution NMR
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules
Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway
Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1′/C3′/C5′ positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1′/C3′/C5′ positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs
Methods of probing the interactions between small molecules and disordered proteins
It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identification of compounds capable of interacting with these proteins and modulating their disease-promoting behaviour is the development of effective techniques to probe such interactions. The difficulties in carrying out binding measurements have resulted in a poor understanding of the mechanisms underlying these interactions. In order to facilitate further methodological advances, here we review the most commonly used techniques to probe three types of interactions involving small molecules: (1) those that disrupt functional interactions between disordered proteins; (2) those that inhibit the aberrant aggregation of disordered proteins, and (3) those that lead to binding disordered proteins in their monomeric states. In discussing these techniques, we also point out directions for future developments.Gabriella T. Heller is supported by the Gates Cambridge Trust Scholarship. Francesco A. Aprile is supported by a Senior Research Fellowship award from the Alzheimer’s Society, UK (grant number 317, AS-SF-16-003)
- …