5,536 research outputs found

    Combining Hebbian and reinforcement learning in a minibrain model

    Full text link
    A toy model of a neural network in which both Hebbian learning and reinforcement learning occur is studied. The problem of `path interference', which makes that the neural net quickly forgets previously learned input-output relations is tackled by adding a Hebbian term (proportional to the learning rate η\eta) to the reinforcement term (proportional to ρ\rho) in the learning rule. It is shown that the number of learning steps is reduced considerably if 1/4<η/ρ<1/21/4 < \eta/\rho < 1/2, i.e., if the Hebbian term is neither too small nor too large compared to the reinforcement term

    Deliverable 2 (SustainAQ)

    Get PDF
    The European Project SustainAQ (Framework 6) aims to identify the limiting factors for the sustainable production of aquatic origin food in Eastern Europe. It focuses on the possible use of Recirculation Aquaculture Systems (RAS) as sustainable method for the production of aquatic animals as mentioned in the communication of the European Commission on Aquaculture in 2009. RASs already exist mainly in western countries and proved economically feasible. RASs allow controlling the production process including effluents, biosecurity and escapes. Eastern European countries are facing challenges related to their excessive water use waste emission, and others. Therefore, these countries are potential beneficiaries of improved sustainability through RAS use. This project intends to assess the benefits of introducing and applying RAS for Eastern European aquaculture. This project involves three Western European countries (Norway, the Netherlands and France) and six East European countries (Croatia, Turkey, Romania, Hungary, Czech Republic and Poland). Ten research institutions collaborate in different tasks (coordination, data collection, data analysis, etc.), and nine small-medium enterprises (SME) participate in data mining (Table 1). The present data is therefore based on the situation in those countries during 2006 till 2008 before the report got finally compiled in 2008/2009

    Performance Modeling and Valuation of Snow-Covered PV Systems: Examination of a Simplified Approach to Decrease Forecasting Error

    Get PDF
    The advent of modern solar energy technologies can improve the costs of energy consumption on a global, national, and regional level, ultimately spanning stakeholders from governmental entities, to utility companies, corporations, and residential homeowners. For those stakeholders experiencing the four seasons, accurately accounting for snow-related energy losses is important for effectively predicting photovoltaic performance energy genreation and valuation. This paper provides an examination of a new, simplified approach to decrease snow-related forecasting error, in comparison to current solar energy performance models. A new method is proposed to allow model designers, and ultimately users, the opportunity to better understand the return on investment for solar energy systems located in snowy environments. The new method is validated using two different sets of solar energy systems located near Green Bay, WI, USA: a 3.0 kW micro-inverter system and a 13.2 kW central inverter system. Both systems were unobstructed, facing south, and set at a tilt of 26.56 degrees. Data were collected beginning in May 2014 (micro-inverter system) and October 2014 (central inverter system), through January 2018. In comparison to reference industry standard solar energy prediction applications (PVWatts and PVsyst), the new method results in lower Mean Absolute Percent Errors per kWh of 0.039% and 0.055%, respectively, for the micro-inverter system and central inverter system. The statistical analysis provides support for incorporating this new method into freely available, online, up-to-date prediction applications, such as PVWatts and PVsyst

    Reionization history constraints from neural network based predictions of high-redshift quasar continua

    Full text link
    Observations of the early Universe suggest that reionization was complete by z6z\sim6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα\alpha damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα\alpha, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα\alpha. Our QSANNdRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNdRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z=7.0851z=7.0851 and ULAS J1342+0928 at z=7.5413z=7.5413, respectively. Using our more accurate reconstructions of these two z>7z>7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find xˉHI=0.250.05+0.05\bar{x}_\mathrm{HI} = 0.25^{+0.05}_{-0.05} at z=7.0851z=7.0851 and xˉHI=0.600.11+0.11\bar{x}_\mathrm{HI} = 0.60^{+0.11}_{-0.11} at z=7.5413z=7.5413. Our results are consistent with the literature and favour a rapid end to reionization

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    Natural polymorphism in the thrombospondin-related adhesive protein of Plasmodium falciparum

    Get PDF
    We have developed a typing system using natural sequence variation in the thrombospondin-related adhesive protein (TRAP) gene of Plasmodium falciparum. This method permits a haplotype to be assigned to any particular TRAP gene. We have applied this method to a hospital-based, case control-study in Mali. Previous sequence variation and conservation in TRAP has been confirmed. Particular TRAP haplotypes can be used as geographic hallmarks. Because of the high level of conflict between characters, we have examined the phylogenetic relationships between parasites using a network approach. Having received patient samples from urban and periurban areas of Bamako, the majority of haplotypes were closely related and distinct from TRAP sequences present in other continents. This suggests that the structure of TRAP can only tolerate a limited number of sequence variations to preserve its function but that this is sufficient to allow the parasite to evade the host's immune system until a long-lived immune response can be maintained. It may also reflect host genetics in that certain variants may escape the host immune response more efficiently than others. For vaccine design, sequences from the major regional variants may need to be considered in the production of effective subunit vaccines

    Gravity separator performance evaluation using Qemscan® particle mineral analysis

    Get PDF
    In a gravity separation device, particle shape, size and density all play a role. The combination of these determines where each individual particle reports to in the viscous fluid, where particle crowding (solids to water ratio) also plays a role. To understand the performance of gravity separation devices in the heavy mineral industry, these particle characteristics need to be measured. There are various challenges in analysing particle density and particle size simultaneously for the purpose of quantifying gravity separator performance, not to mention particle shape. These analytical challenges include the high cost of high-density sink-float fractionation, toxicity of high-density sink-float media, inability of sink-float media to fractionate at densities greater than 4.0 g/cm3, and the time-intensive nature of these fractionations. The use of the detailed particle-by-particle output from Qemscan® particle mineral analyses (PMA) as a fast and cost-effective alternative is evaluated. The size and density outputs from the Qemscan® were employed to characterize the performance of a heavy mineral spiral concentrator as an example. Critical analytical requirements are to be addressed before the Qemscan® output data can be utilized.This paper was first presented at the, Heavy Minerals Conference, ‘What next?’, 20–23 September 2009, Champagne Sport Resort, Drakensberg.http://www.saimm.co.za/ai201
    corecore