922 research outputs found
Optical Spectroscopy of K-selected Extremely Red Galaxies
We have obtained spectroscopic redshifts for 24 red galaxies from a sample
with median Ks=18.7 and F814W - Ks > 4, using the Keck telescope. These
EROshave high resolution morphologies from HST (Yan & Thompson 2003). Among the
24 redshifts, the majority (92%) are at . We derived the
rest-frame J-band luminosity function at . Our result
suggests that the luminosity evolution between bright EROs at and the
present-day L massive galaxies is at most about 0.7 magnitude. Combining
the morphologies and deep spectroscopy revealed the following properties: (1)
86% of the spectra have absorption features from old stars, suggesting that the
dominant stellar populations seen in the rest-frame UV are old stars. 50% of
the sources have pure absorption lines, while the remaining 50% have emission
lines, indicating recent star formation. We conclude that the color criterion
for EROs is very effective in selecting old stellar populations at ,
and a large fraction of these systems with prominent old stellar populations
also have recent star formation. (2) The 12 emission line systems have the same
number of disk and bulge galaxies as in the remaining 12 pure absorption line
systems. We conclude that spectral classes do not have a simple, direct
correspondence with morphological types. (3) Three EROs could be isolated, pure
passively evolving early-type galaxies at . This implies that only a
small fraction (10%--15%) of early-type galaxies are formed in a rapid burst of
star formation at high redshifts and evolved passively since then. (Abridged).Comment: 27 pages, 8 figures. Accepted for publication in Astronomical
Journal, issue March 200
Probing Cool and Warm Infrared Galaxies using Photometric and Structural Measures
We have analyzed a sample of nearby cool and warm infrared (IR) galaxies
using photometric and structural parameters. The set of measures include
far-infrared color (), total IR
luminosity (), radio surface brightness as well as radio,
near-infrared, and optical sizes. In a given luminosity range cool and warm
galaxies are considered as those sources that are found approximately below and above the mean color in the far-infrared
diagram. We find that galaxy radio surface brightness is well correlated with
color whereas size is less well correlated with color. Our analysis indicates
that IR galaxies that are dominated by cool dust are large, massive spirals
that are not strongly interacting or merging and presumably the ones with the
least active star formation. Dust in these cool objects is less centrally
concentrated than in the more typical luminous and ultra-luminous IR galaxies
that are dominated by warm dust. Our study also shows that low luminosity early
type unbarred and transitional spirals are responsible for the large scatter in
the diagram. Among highly luminous galaxies, late type unbarred
spirals are predominately warm, and early type unbarred and barred are
systematically cooler. We highlight the significance of diagram
in terms of local and high redshifts sub-millimeter galaxies.Comment: Accepted for publication in ApJ, 2006, 23 pages, 3 postscript
figures, 1 table. The table can be obtained on request from the author
Pengaruh Customer Relationship Management Terhadap Loyalitas Pelanggan Starbucks Di Surabaya
: The study is to find the influence of Customer Relationship Management (CRM)on customer loyalty of Starbucks Coffee Surabaya. CRM variables include financial benefits,social benefits and structural ties. Multiple linear regression is used with 150 respondentsusing purposive sampling. The results show that financial benefits and structural ties havepositive and significant influences on customer loyalty; whereas, social benefits has positivebut insignificant influence on customer loyalty. The most dominant variable influencingcustomer loyalty in Starbucks Coffee Surabaya is financial benefits
Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection.
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordPseudomonas fluorescens Ps_77 is a blue-pigmenting strain able to cause food product discoloration, causing relevant economic losses especially in the dairy industry. Unlike non-pigmenting P. fluorescens, blue pigmenting strains previously were shown to carry a genomic region that includes homologs of trpABCDF genes, pointing at a possible role of the tryptophan biosynthetic pathway in production of the pigment. Here, we employ random mutagenesis to first identify the genes involved in blue-pigment production in P. fluorescens Ps_77 and second to investigate the biological function of the blue pigment. Genetic analyses based on the mapping of the random insertions allowed the identification of eight genes involved in pigment production, including the second copy of trpB (trpB_1) gene. Phenotypic characterization of Ps_77 white mutants demonstrated that the blue pigment increases oxidative-stress resistance. Indeed, while Ps_77 was growing at a normal rate in presence of 5 mM of H 2 O 2 , white mutants were completely inhibited. The antioxidative protection is not available for non-producing bacteria in co-culture with Ps_77
Micro-scale investigation of carbonation process in partially serpentinized peridotites
The carbonation of ultramafic rocks is, theoretically, the most efficient reaction to trap CO2 irreversibly in
the form of solid carbonates, as predicted by equilibrium thermodynamic calculations. However, the success
of industrial or natural carbonation in large ultramafic aquifers or oceanic ultramafic exposures does not only
rely on the thermodynamic conditions of chemical reactions, but also on their feedback effects on the reactive
surface area and on the local porosity and permeability. In addition, side processes like serpentinization, redox
reactions, abiotic catalytic effects, and biological activity, can be expected in such complex natural system. Their
occurrence and implications on carbon speciation and carbon transfers during hydrothermal alteration of oceanic
peridotites have not been explored yet and requires detailed study of natural and/or experimental carbonation zones.
We have combined petrographic and electron microscopy with SIMS, Raman and FTIR microspectroscopy
on partially serpentinized peridotites drilled during the IODP leg 304 (30
N, MAR) in order to characterize
the mechanisms of peridotite carbonation at the fluid-mineral interface and identify the associated speciation of
carbon (inorganic and organic carbon occurrences). We present first results on zones located close to talc-tremolite
sheared veins in holes 1309B and D. Associations of carbonates, porous phyllosilicates and oxides are observed
in close vicinity of relict olivines that underwent a previous stage of serpentinization. The olivine-carbonate
interface is nanoporous which facilitates mass transfer between fluid and mineral. The phyllosilicate identified as
saponite results from the metasomatic replacement, during the carbonation stage, of previously formed serpentine.
These observations do not favour reaction-induced cracking but rather a transfer-controlled process in an open
system. Among the submicrometric dark clusters widely-distributed in saponite and in serpentine, vibrational
microspectroscopy reveals the presence of various types of organic compounds that tend to be located close to
micrometric sulphides grains.
Those results underline the microscale variability of carbon speciation within hydrothermally altered peridotites. The association of reduced carbon phases with the carbonation texture suggests that CO2 conversion
may not be limited to solid carbonate formation in natural systems and that biological activity and/or abiotic
CO2 reduction, possibly catalyzed by Ni-rich sulphides, can occur contemporaneously. This complex association
of reactions has to be unravelled further to determine the respective contribution of abiotic versus biological
processes and integrate them in carbon transfers modelling through the oceanic lithosphere
Simulations of Galactic Cosmic Ray Impacts on the Herschel/PACS bolometer Arrays with Geant4 Code
The effects of the in-flight behaviour of the bolometer arrays of the
Herschel/PACS instrument under impacts of Galactic cosmic rays are explored.
This instrument is part of the ESA-Herschel payload, which will be launched at
the end of 2008 and will operate at the Lagrangian L2 point of the Sun-Earth
system. We find that the components external to the detectors (the spacecraft,
the cryostat, the PACS box, collectively referred to as the `shield') are the
major source of secondary events affecting the detector behaviour. The impacts
deposit energy on the bolometer chips and influence the behaviour of nearby
pixels. 25% of hits affect the adjacent pixels. The energy deposited raises the
bolometer temperature by a factor ranging from 1 to 6 percent of the nominal
value. We discuss the effects on the observations and compare simulations with
laboratory tests.Comment: Experimental Astronomy, 2008, in pres
Quasar clustering: evidence for an increase with redshift and implications for the nature of AGNs
The evolution of quasar clustering is investigated with a new sample of 388
quasars with 0.3<z<=2.2, B<=20.5 and Mb<-23, selected over an area of 24.6 sq.
deg. in the South Galactic Pole. Assuming a two-point correlation function of
the form xi(r) = (r/r_o)^-1.8, we detect clustering with r_0=6.2 +/- 1.6 h^-1
comoving Mpc at an average redshift of z=1.3. We find a 2 sigma significant
increase of the quasar clustering between z=0.95 and z=1.8, independent of the
quasar absolute magnitude and inconsistent with recent evidence on the
evolution of galaxy clustering. If other quasar samples are added (resulting in
a total data-set of 737 quasars) the increase of the quasar clustering is still
favoured although it becomes less significant. We find epsilon=-2.5.
Evolutionary parameters epsilon>0.0 are excluded at a 0.3% probability level,
to be compared with epsilon=0.8 found for galaxies. The observed clustering
properties appear qualitatively consistent with a scenario of Omega=1 CDM in
which a) the difference between the quasar and the galaxy clustering can be
explained as a difference in the effective bias and redshift distributions, and
b) the quasars, with a lifetime of t~10^8 yr, sparsely sample halos of mass
greater than M_min~10^12-10^13 h^-1 M_sun. We discuss also the possibility that
the observed change in the quasar clustering is due to an increase in the
fraction of early-type galaxies as quasar hosts at high z.Comment: 8 pages including 2 eps figures, LaTeX (AAS v4.0), ApJ in pres
Vigorous star formation hidden by dust in a galaxy at
Near-infrared surveys have revealed a substantial population of enigmatic
faint galaxies with extremely red optical-to-near-infrared colours and with a
sky surface density comparable to that of faint quasars. There are two
scenarios for these extreme colours: (i) these distant galaxies have formed
virtually all their stars at very high redshifts and, due to the absence of
recently formed stars, the colours are extremely red and (ii) these distant
galaxies contain large amounts of dust, severely reddening the rest-frame
UV--optical spectrum. HR10 () is considered the archetype of the
extremely red galaxies. Here we report the detection of the continuum emission
from HR10 at 850m and at 1250m, demonstrating that HR10 is a very
dusty galaxy undergoing a major episode of star formation. Our result provides
a clear example of a high-redshift galaxy where the star formation rate
inferred from the ultraviolet luminosity would be underestimated by a factor up
to 1000, and shows that great caution should be used to infer the global star
formation history of the Universe from optical observations only.Comment: 12 pages, 1 figure, Nature, in press (30 April 1998
Tumor suppressors in chronic lymphocytic leukemia: From lost partners to active targets
Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL)
- …