33,832 research outputs found

    Laser Interferometer Gravitational-Wave Observatory beam tube component and module leak testing

    Get PDF
    Laser Interferometer Gravitational-Wave Observatory (LIGO) is a joint project of the California Institute of Technology and the Massachusetts Institute of Technology funded by the National Science Foundation. The project is designed to detect gravitational waves from astrophysical sources such as supernova and black holes. The LIGO project constructed observatories at two sites in the U.S. Each site includes two beam tubes (each 4 km long) joined to form an "L" shape. The beam tube is a 1.25 m diam 304 L stainless steel, ultrahigh vacuum tube that will operate at 1×10^–9 Torr or better. The beam tube was manufactured using a custom spiral weld tube mill from material processed to reduce the outgassing rate in order to minimize pumping costs. The integrity of the beam tube was assured by helium mass spectrometer leak testing each component of the beam tube system prior to installation. Each 2 km long, isolatable beam tube module was then leak tested after completion

    Visualization design and verification of Ada tasking using timing diagrams

    Get PDF
    The use of timing diagrams is recommended in the design and testing of multi-task Ada programs. By displaying the task states vs. time, timing diagrams can portray the simultaneous threads of data flow and control which characterize tasking programs. This description of the system's dynamic behavior from conception to testing is a necessary adjunct to other graphical techniques, such as structure charts, which essentially give a static view of the system. A series of steps is recommended which incorporates timing diagrams into the design process. Finally, a description is provided of a prototype Ada Execution Analyzer (AEA) which automates the production of timing diagrams from VAX/Ada debugger output

    Relative coronal abundances derived from X-ray observations 3: The effect of cascades on the relative intensity of Fe (XVII) line fluxes, and a revised iron abundance

    Get PDF
    Permitted lines in the optically thin coronal X-ray spectrum were analyzed to find the distribution of coronal material, as a function of temperature, without special assumptions concerning coronal conditions. The resonance lines of N, O, Ne, Na, Mg, Al, Si, S, and Ar which dominate the quiet coronal spectrum below 25A were observed. Coronal models were constructed and the relative abundances of these elements were determined. The intensity in the lines of the 2p-3d transitions near 15A was used in conjunction with these coronal models, with the assumption of coronal excitation, to determine the Fe XVII abundance. The relative intensities of the 2p-3d Fe XVII lines observed in the corona agreed with theoretical prediction. Using a more complete theoretical model, and higher resolution observations, a revised calculation of iron abundance relative to hydrogen of 0.000026 was made

    Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    Get PDF
    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model, we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat, CimpC_{\rm imp}, to be calculated accurately from local static correlation functions; specifically via Cimp=∂Eionic∂T+1/2∂Ehyb∂TC_{\rm imp}=\frac{\partial E_{\rm ionic}}{\partial T} + 1/2\frac{\partial E_{\rm hyb}}{\partial T}, where EionicE_{\rm ionic} and EhybE_{\rm hyb} are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to CimpC_{\rm imp}. For the non-degenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The new approach could also be of interest within other impurity solvers, e.g., within quantum Monte Carlo techniques.Comment: 16 pages, 15 figures, published versio

    Master equation approach to line shape in dissipative systems

    Full text link
    We propose a formulation to obtain the line shape of a magnetic response with dissipative effects that directly reflects the nature of the environment. Making use of the fact that the time evolution of a response function is described by the same equation as the reduced density operator, we formulate a full description of the complex susceptibility. We describe the dynamics using the equation of motion for the reduced density operator, including the term for the initial correlation between the system and a thermal bath. In this formalism, we treat the full description of non-Markovian dynamics, including the initial correlation. We present an explicit and compact formula up to the second order of cumulants, which can be applied in a straightforward way to multiple spin systems. We also take into account the frequency shift by the system-bath interaction. We study the dependence of the line shape on the type of interaction between the system and the thermal bath. We demonstrate that the present formalism is a powerful tool for investigating various kinds of systems, and we show how it is applied to spin systems, including those with up to three spins. We distinguish the contributions of the initial correlation and the frequency shift, and make clear the role of each contribution in the Ohmic coupling spectral function. As examples of applications to multispin systems, we obtain the dependence of the line shape on the spatial orientation in relation to the direction of the static field (Nagata-Tazuke effect), including the effects of the thermal environment, in a two-spin system, along with the dependence on the arrangement of a triangle in a three-spin system.Comment: 12 Figures, to be appeared in Physical Review E Typos are correcte

    Automation of NLO processes and decays and POWHEG matching in WHIZARD

    Get PDF
    We give a status report on the automation of next-to-leading order processes within the Monte Carlo event generator WHIZARD, using GoSam and OpenLoops as provider for one-loop matrix elements. To deal with divergences, WHIZARD uses automated FKS subtraction, and the phase space for singular regions is generated automatically. NLO examples for both scattering and decay processes with a focus on e+e- processes are shown. Also, first NLO-studies of observables for collisions of polarized leptons beams, e.g. at the ILC, will be presented. Furthermore, the automatic matching of the fixed-order NLO amplitudes with emissions from the parton shower within the POWHEG formalism inside WHIZARD will be discussed. We also present results for top pairs at threshold in lepton collisions, including matching between a resummed threshold calculation and fixed-order NLO. This allows the investigation of more exclusive differential observables.Comment: 5 pages, 3 figures, Talk presented at ACAT 2016 at UTFSM, Valpara\'iso, Chil

    Transport properties of a 3D topological insulator based on a strained high mobility HgTe film

    Get PDF
    We investigated the magnetotransport properties of strained, 80nm thick HgTe layers featuring a high mobility of mu =4x10^5 cm^2/Vs. By means of a top gate the Fermi-energy is tuned from the valence band through the Dirac type surface states into the conduction band. Magnetotransport measurements allow to disentangle the different contributions of conduction band electrons, holes and Dirac electrons to the conductivity. The results are are in line with previous claims that strained HgTe is a topological insulator with a bulk gap of ~15meV and gapless surface states.Comment: 11 pages (4 pages of main text, 6 pages of supplemental materials), 8 figure

    Purification and analytical characterization of an anti- CD4 monoclonal antibody for human therapy

    Get PDF
    A purification process for the monclonal anti-CD4 antibody MAX.16H5 was developed on an analytical scale using (NH&SO, precipitation, anion-exchange chromatography on MonoQ or Q-Sepharose, hydrophobic interaction chromatography on phenyl- Sepharose and gel filtration chromatography on Superdex 200. The purification schedule was scaled up and gram amounts of MAX.16H5 were produced on corresponding BioPilot columns. Studies of the identity, purity and possible contamination by a broad range of methods showed that the product was highly purified and free from contaminants such as mouse DNA, viruses, pyrogens and irritants. Overall, the analytical data confirm that the monoclonal antibody MAX.16H5 prepared by this protocol is suitable for human therapy
    • …
    corecore