10,213 research outputs found

    Analysis of Adjoint Error Correction for Superconvergent Functional Estimates

    Get PDF
    Earlier work introduced the notion of adjoint error correction for obtaining superconvergent estimates of functional outputs from approximate PDE solutions. This idea is based on a posteriori error analysis suggesting that the leading order error term in the functional estimate can be removed by using an adjoint PDE solution to reveal the sensitivity of the functional to the residual error in the original PDE solution. The present work provides a priori error analysis that correctly predicts the behaviour of the remaining leading order error term. Furthermore, the discussion is extended from the case of homogeneous boundary conditions and bulk functionals, to encompass the possibilities of inhomogeneous boundary conditions and boundary functionals. Numerical illustrations are provided for both linear and nonlinear problems.\ud \ud This research was supported by EPSRC under grant GR/K91149, and by NASA/Ames Cooperative Agreement No. NCC 2-5431

    An introduction to the adjoint approach to design

    Get PDF
    Optimal design methods involving the solution of an adjoint system of equations are an active area of research in computational fluid dynamics, particularly for aeronautical applications. This paper presents an introduction to the subject, emphasising the simplicity of the ideas when viewed in the context of linear algebra. Detailed discussions also include the extension to p.d.e.'s, the construction of the adjoint p.d.e. and its boundary conditions, and the physical significance of the adjoint solution. The paper concludes with examples of the use of adjoint methods for optimising the design of business jets.\ud \ud This research was supported by funding from Rolls-Royce plc, BAe Systems plc and EPSRC grants GR/K91149 and GR/L95700

    Analytic Adjoint Solutions for the Quasi-1D Euler Equations

    Get PDF
    The analytic properties of adjoint solutions are examined for the quasi-1D Euler equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint variables are continuous with zero gradient at the shock, and that an internal adjoint boundary condition is required at the shock. A Green's function approach is used to derive the analytic adjoint solutions corresponding to supersonic, subsonic, isentropic and shocked transonic flows in a converging-diverging duct of arbitrary shape. This analysis reveals a logarithmic singularity at the sonic throat and confirms the expected properties at the shock.\ud \ud This research was supported by EPSRC under grant GR/K9114

    Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    Get PDF
    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity

    Adjoint recovery of superconvergent functionals from PDE approximations

    Get PDF
    Motivated by applications in computational fluid dynamics, a method is presented for obtaining estimates of integral functionals, such as lift or drag, that have twice the order of accuracy of the computed flow solution on which they are based. This is achieved through error analysis that uses an adjoint PDE to relate the local errors in approximating the flow solution to the corresponding global errors in the functional of interest. Numerical evaluation of the local residual error together with an approximate solution to the adjoint equations may thus be combined to produce a correction for the computed functional value that yields the desired improvement in accuracy. Numerical results are presented for the Poisson equation in one and two dimensions and for the nonlinear quasi-one-dimensional Euler equations. The theory is equally applicable to nonlinear equations in complex multi-dimensional domains and holds great promise for use in a range of engineering disciplines in which a few integral quantities are a key output of numerical approximations

    Comparison of vibrations of a combination of solid-rocket launch vehicle and payload during a ground firing and launching

    Get PDF
    The results of a study into the environmental vibrations of a payload mounted on the Nike rocket launch vehicle were presented. Data were obtained during the flight acceptance test of the payload, the firing of the total vehicle in a special test stand, and the powered and unpowered flights of the vehicle. The vibrational response of the structure was measured. Data were also obtained on the fluctuating pressure on the outside surface of the vehicle and inside the forward and after ends of the rocket chamber. A comparison of the data from the three test conditions indicated that external pressure fluctuations were the major source of vibrations in the payload area, and pressure fluctuations within the rocket motor were the major source of vibrations contiguous to the payload area

    High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects

    Full text link
    We have carried out boundary-layer-resolved, unstructured fully-compressible Navier--Stokes simulations of an ultrasonic standing-wave thermoacoustic engine (TAE) model. The model is constructed as a quarter-wavelength engine, approximately 4 mm by 4 mm in size and operating at 25 kHz, and comprises a thermoacoustic stack and a coin-shaped cavity, a design inspired by Flitcroft and Symko (2013). Thermal and viscous boundary layers (order of 10 μ\mathrm{\mu}m) are resolved. Vibrational and rotational molecular relaxation are modeled with an effective bulk viscosity coefficient modifying the viscous stress tensor. The effective bulk viscosity coefficient is estimated from the difference between theoretical and semi-empirical attenuation curves. Contributions to the effective bulk viscosity coefficient can be identified as from vibrational and rotational molecular relaxation. The inclusion of the coefficient captures acoustic absorption from infrasonic (\sim10 Hz) to ultrasonic (\sim100 kHz) frequencies. The value of bulk viscosity depends on pressure, temperature, and frequency, as well as the relative humidity of the working fluid. Simulations of the TAE are carried out to the limit cycle, with growth rates and limit-cycle amplitudes varying non-monotonically with the magnitude of bulk viscosity, reaching a maximum for a relative humidity level of 5%. A corresponding linear model with minor losses was developed; the linear model overpredicts transient growth rate but gives an accurate estimate of limit cycle behavior. An improved understanding of thermoacoustic energy conversion in the ultrasonic regime based on a high-fidelity computational framework will help to further improve the power density advantages of small-scale thermoacoustic engines.Comment: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech, 201

    Algorithm Developments for Discrete Adjoint Methods

    Get PDF
    This paper presents a number of algorithm developments for adjoint methods using the 'discrete' approach in which the discretisation of the non-linear equations is linearised and the resulting matrix is then transposed. With a new iterative procedure for solving the adjoint equations, exact numerical equivalence is maintained between the linear and adjoint discretisations. The incorporation of strong boundary conditions within the discrete approach is discussed, as well as a new application of adjoint methods to linear unsteady flow in turbomachinery

    Simulation model of erosion and deposition on a barchan dune

    Get PDF
    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity
    corecore