3,866 research outputs found

    Prolonged QT Syndrome and Seizure Secondary to Alkaline Earth Metal Deficiency: A Case Report

    Get PDF
    Introduction. Alkaline earth metal deficiency is recognized as a cause of both seizure and long QT syndrome. Their deficiency can have significant repercussions on the function of cells, tissues, and organs of the body. An understanding of the role of electrolytes allows an appreciation of the significance of depleted levels on cell function. Case Report. A 65-year-old lady was admitted with symptoms of chest discomfort, vomiting, increased stoma output, and dizziness. Two days following admission she suffered a tonic-clonic seizure. ECG review demonstrated a prolonged QTc interval, raising the possibility of an underlying Torsades de Pointes as the precipitant. This was attributed to electrolyte disturbance arising as a result of multiple aetiologies. Discussion. This paper highlights the multisystem effects of electrolyte disturbance, with emphasis upon its role in precipitating cardiac arrhythmia and neurological symptoms

    Six Degrees of Epistasis: Statistical Network Models for GWAS

    Get PDF
    There is growing evidence that much more of the genome than previously thought is required to explain the heritability of complex phenotypes. Recent studies have demonstrated that numerous common variants from across the genome explain portions of genetic variability, spawning various avenues of research directed at explaining the remaining heritability. This polygenic structure is also the motivation for the growing application of pathway and gene set enrichment techniques, which have yielded promising results. These findings suggest that the coordination of genes in pathways that are known to occur at the gene regulatory level also can be detected at the population level. Although genes in these networks interact in complex ways, most population studies have focused on the additive contribution of common variants and the potential of rare variants to explain additional variation. In this brief review, we discuss the potential to explain additional genetic variation through the agglomeration of multiple gene–gene interactions as well as main effects of common variants in terms of a network paradigm. Just as is the case for single-locus contributions, we expect each gene–gene interaction edge in the network to have a small effect, but these effects may be reinforced through hubs and other connectivity structures in the network. We discuss some of the opportunities and challenges of network methods for analyzing genome-wide association studies (GWAS) such as the study of hubs and motifs, and integrating other types of variation and environmental interactions. Such network approaches may unveil hidden variation in GWAS, improve understanding of mechanisms of disease, and possibly fit into a network paradigm of evolutionary genetics

    Magnetic Reconnection with Radiative Cooling. I. Optically-Thin Regime

    Full text link
    Magnetic reconnection, a fundamental plasma process associated with a rapid dissipation of magnetic energy, is believed to power many disruptive phenomena in laboratory plasma devices, the Earth magnetosphere, and the solar corona. Traditional reconnection research, geared towards these rather tenuous environments, has justifiably ignored the effects of radiation on the reconnection process. However, in many reconnecting systems in high-energy astrophysics (e.g., accretion-disk coronae, relativistic jets, magnetar flares) and, potentially, in powerful laser plasma and z-pinch experiments, the energy density is so high that radiation, in particular radiative cooling, may start to play an important role. This observation motivates the development of a theory of high-energy-density radiative magnetic reconnection. As a first step towards this goal, we present in this paper a simple Sweet--Parker-like theory of non-relativistic resistive-MHD reconnection with strong radiative cooling. First, we show how, in the absence of a guide magnetic field, intense cooling leads to a strong compression of the plasma in the reconnection layer, resulting in a higher reconnection rate. The compression ratio and the layer temperature are determined by the balance between ohmic heating and radiative cooling. The lower temperature in the radiatively-cooled layer leads to a higher Spitzer resistivity and hence to an extra enhancement of the reconnection rate. We then apply our general theory to several specific astrophysically important radiative processes (bremsstrahlung, cyclotron, and inverse-Compton) in the optically thin regime, for both the zero- and strong-guide-field cases. We derive specific expressions for key reconnection parameters, including the reconnection rate. We also discuss the limitations and conditions for applicability of our theory.Comment: 31 pages, 1 figur

    Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case

    Full text link
    We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means of numerical 2D, axisymmetric, MHD simulations with and without resistive heating. Our main result is that the properties of the accretion flow depend mostly on an equatorial accretion torus which is made of the material that has too much angular momentum to be accreted directly. The torus accretes, however, because of the transport of angular momentum due to the magnetorotational instability (MRI). Initially, accretion is dominated by the polar funnel, as in the hydrodynamic inviscid case, where material has zero or very low angular momentum. At the later phase of the evolution, the torus thickens towards the poles and develops a corona or an outflow or both. Consequently, the mass accretion through the funnel is stopped. The accretion of rotating gas through the torus is significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate). It is also much smaller than the accretion rate in the inviscid, weakly rotating case.Our results do not change if we switch on or off resistive heating. Overall our simulations are very similar to those presented by Stone, Pringle, Hawley and Balbus despite different initial and outer boundary conditions. Thus, we confirm that MRI is very robust and controls the nature of radiatively inefficient accretion flows.Comment: submitted in Ap

    Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems

    Full text link
    Confined quantum systems involving NN identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly, intermediate, and strongly-interacting systems has been set forth by the authors in a previous series of papers. Dimensional perturbation theory was used, and in conjunction with group theory, an analytic beyond-mean-field correlated wave function at lowest order for a system under spherical confinement with a general two-body interaction was derived. In the present paper, we use this analytic wave function to derive the corresponding lowest-order, analytic density profile and apply it to the example of a Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was submitted after responding to a reviewer's comment

    Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle

    Get PDF
    This work was funded by UK NERC grants to M.G.R. and A.J.M. an NERC studentship to D.J.P. the University of Georgia and a US NSF grant to A.J.M. and M.G.R.Parenting in the burying beetle Nicrophorus vespilloides is complex and, unusually, the sex and number of parents that can be present is flexible. Such flexibility is expected to involve specialized behaviour by the two sexes under biparental conditions. Here, we show that offspring fare equally well regardless of the sex or number of parents present. Comparing transcriptomes, we find a largely overlapping set of differentially expressed genes in both uniparental and biparental females and in uniparental males including vitellogenin, associated with reproduction, and takeout, influencing sex-specific mating and feeding behaviour. Gene expression in biparental males is similar to that in non-caring states. Thus, being ‘biparental’ in N. vespilloides describes the family social organization rather than the number of directly parenting individuals. There was no specialization; instead, in biparental families, direct male parental care appears to be limited with female behaviour unchanged. This should lead to strong sexual conflict.Publisher PDFPeer reviewe

    A PC parallel port button box provides millisecond response time accuracy under Linux

    Get PDF
    For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus
    corecore