566 research outputs found

    Carbon choices determine US cities committed to futures below sea level

    Get PDF
    Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3–9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185–1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon

    Search for Intrinsic Excitations in 152Sm

    Full text link
    The 685 keV excitation energy of the first excited 0+ state in 152Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of 152Sm are used to probe the E2 collectivity of excited 0+ states in this "soft" nucleus and the results are compared with model predictions. No candidates for two-phonon K=0+ quadrupole vibrational states are found. A 2+, K=2 state with strong E2 decay to the first excited K=0+ band and a probable 3+ band member are established.Comment: 4 pages, 6 figures, accepted for publication as a Rapid Communication in Physical Review

    Predictive Assay For Cancer Targets

    Get PDF
    Early detection of cancer is a key element in successful treatment of the disease. Understanding the particular type of cancer involved, its origins and probable course, is also important. PhIP (2-amino-1-methyl-6 phenylimidazo [4,5-b]pyridine), a heterocyclic amine produced during the cooking of meat at elevated temperatures, has been shown to induce mammary cancer in female, Sprague-Dawley rats. Tumors induced by PhIP have been shown to contain discreet cytogenetic signature patterns of gains and losses using comparative genomic hybridization (CGH). To determine if a protein signature exists for these tumors, we are analyzing expression levels of the protein products of the above-mentioned tumors in combination with a new bulk protein subtractive assay. This assay produces a panel of antibodies against proteins that are either on or off in the tumor. Hybridization of the antibody panel onto a 2-D gel of tumor or control protein will allow for identification of a distinct protein signature in the tumor. Analysis of several gene databases has identified a number of rat homologs of human cancer genes located in these regions of gain and loss. These genes include the oncogenes c-MYK, ERBB2/NEU, THRA and tumor suppressor genes EGR1 and HDAC3. The listed genes have been shown to be estrogen-responsive, suggesting a possible link between delivery of bio-activated PhIP to the cell nucleus via estrogen receptors and gene-specific PhIP-induced DNA damage, leading to cell transformation. All three tumors showed similar silver staining patterns compared to each other, while they all were different than the control tissue. Subsequent screening of these genes against those from tumors know to be caused by other agents may produce a protein signature unique to PhIP, which can be used as a diagnostic to augment optical and radiation-based detection schemes

    Enhancing Humoral Responses Against HIV Envelope Trimers via Nanoparticle Delivery with Stabilized Synthetic Liposomes

    Get PDF
    An HIV vaccine capable of eliciting durable neutralizing antibody responses continues to be an important unmet need. Multivalent nanoparticles displaying a high density of envelope trimers may be promising immunogen forms to elicit strong and durable humoral responses to HIV, but critical particle design criteria remain to be fully defined. To this end, we developed strategies to covalently anchor a stabilized gp140 trimer, BG505 MD39, on the surfaces of synthetic liposomes to study the effects of trimer density and vesicle stability on vaccine-elicited humoral responses in mice. CryoEM imaging revealed homogeneously distributed and oriented MD39 on the surface of liposomes irrespective of particle size, lipid composition, and conjugation strategy. Immunization with covalent MD39-coupled liposomes led to increased germinal center and antigen-specific T follicular helper cell responses and significantly higher avidity serum MD39-specific IgG responses compared to immunization with soluble MD39 trimers. A priming immunization with liposomal-MD39 was important for elicitation of high avidity antibody responses, regardless of whether booster immunizations were administered with either soluble or particulate trimers. The stability of trimer anchoring to liposomes was critical for these effects, as germinal center and output antibody responses were further increased by liposome compositions incorporating sphingomyelin that exhibited high in vitro stability in the presence of serum. Together these data highlight key liposome design features for optimizing humoral immunity to lipid nanoparticle immunogens.National Institute of Allergy and Infectious Diseases (U.S.) (Award UM1AI100663)National Institutes of Health (U.S.) (Award P01-AI104715)National Institutes of Health (U.S.) (Award P01-AI048240)National Cancer Institute (U.S.) (Grant P30-CA14051

    In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections

    Affinity purification of bacterial outer membrane vesicles (OMVs) utilizing a His-tag mutant

    Get PDF
    To facilitate the rapid purification of bacterial outer membrane vesicles (OMVs), we developed two plasmid constructs that utilize a truncated, transmembrane protein to present an exterior histidine repeat sequence. We chose OmpA, a highly abundant porin protein, as the protein scaffold and utilized the lac promoter to allow for inducible control of the epitope-presenting construct. OMVs containing mutant OmpA-His6 were purified directly from Escherichia coli culture media on an immobilized metal affinity chromatography (IMAC) Ni-NTA resin. This enabling technology can be combined with other molecular tools directed at OMV packaging to facilitate the separation of modified/cargo-loaded OMV from their wt counterparts. In addition to numerous applications in the pharmaceutical and environmental remediation industries, this technology can be utilized to enhance basic research capabilities in the area of elucidating endogenous OMV function
    • …
    corecore