255 research outputs found

    The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner

    Full text link
    In Escherichia coli , DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA - dsbC - mutants have a number of phenotypes not exhibited by either dsbA - , dsbC - or dsbA - dsbD - mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage φ80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb - strains. dsbA - dsbC - mutants exhibit unique changes at the protein level that are not exhibited by dsbA - dsbD - mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/1/MMI_6030_sm_Tables_S1-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/2/MMI_tables_s1-s4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72894/3/j.1365-2958.2007.06030.x.pd

    Genomic Convergence among ERRα, PROX1, and BMAL1 in the Control of Metabolic Clock Outputs

    Get PDF
    Metabolic homeostasis and circadian rhythms are closely intertwined biological processes. Nuclear receptors, as sensors of hormonal and nutrient status, are actively implicated in maintaining this physiological relationship. Although the orphan nuclear receptor estrogen-related receptor α (ERRα, NR3B1) plays a central role in the control of energy metabolism and its expression is known to be cyclic in the liver, its role in temporal control of metabolic networks is unknown. Here we report that ERRα directly regulates all major components of the molecular clock. ERRα-null mice also display deregulated locomotor activity rhythms and circadian period lengths under free-running conditions, as well as altered circulating diurnal bile acid and lipid profiles. In addition, the ERRα-null mice exhibit time-dependent hypoglycemia and hypoinsulinemia, suggesting a role for ERRα in modulating insulin sensitivity and glucose handling during the 24-hour light/dark cycle. We also provide evidence that the newly identified ERRα corepressor PROX1 is implicated in rhythmic control of metabolic outputs. To help uncover the molecular basis of these phenotypes, we performed genome-wide location analyses of binding events by ERRα, PROX1, and BMAL1, an integral component of the molecular clock. These studies revealed the existence of transcriptional regulatory loops among ERRα, PROX1, and BMAL1, as well as extensive overlaps in their target genes, implicating these three factors in the control of clock and metabolic gene networks in the liver. Genomic convergence of ERRα, PROX1, and BMAL1 transcriptional activity thus identified a novel node in the molecular circuitry controlling the daily timing of metabolic processes

    The Canadian consortium for arctic data interoperability : an emerging polar information network

    Get PDF
    Established in 2015, the Canadian Consortium for Arctic Data Interoperability (CCADI) is an emerging initiative to develop an integrated Canadian arctic data anagement system that will facilitate information discovery, establish metadata and data sharing standards, enable interoperability among existing data infrastructures, and that will be accessible to a broad audience of users. Key to the CCADI vision are: standards and mechanisms for metadata interoperability and semantic interoperability; a distributed data exchange platform; streamlined data services with common entry, access, search, match, analysis, visualization and output tools; an intellectual property and sensitive data service; and data stewardship capacity. This will be a particularly challenging set of tasks given that the data planned for inclusion is multidisciplinary, in multiple types that range from sensor data to material artifacts, and, in some cases, confidential.publishedVersio

    Translating Clinical Findings into Knowledge in Drug Safety Evaluation - Drug Induced Liver Injury Prediction System (DILIps)

    Get PDF
    Drug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential. We then developed in silico predictive models for each of these 13 side effects, which were further combined to construct a DILI prediction system (DILIps). The DILIps yielded 60–70% prediction accuracy for three independent validation sets. To enhance the confidence for identification of drugs that cause severe DILI in humans, the “Rule of Three” was developed in DILIps by using a consensus strategy based on 13 models. This gave high positive predictive value (91%) when applied to an external dataset containing 206 drugs from three independent literature datasets. Using the DILIps, we screened all the drugs in DrugBank and investigated their DILI potential in terms of protein targets and therapeutic categories through network modeling. We demonstrated that two therapeutic categories, anti-infectives for systemic use and musculoskeletal system drugs, were enriched for DILI, which is consistent with current knowledge. We also identified protein targets and pathways that are related to drugs that cause DILI by using pathway analysis and co-occurrence text mining. While marketed drugs were the focus of this study, the DILIps has a potential as an evaluation tool to screen and prioritize new drug candidates or chemicals, such as environmental chemicals, to avoid those that might cause liver toxicity. We expect that the methodology can be also applied to other drug safety endpoints, such as renal or cardiovascular toxicity

    Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation

    Get PDF
    Litter decomposition contributes to one of the largest fluxes of carbon (C) in the terrestrial biosphere and is a primary control on nutrient cycling. The inability of models using climate and litter chemistry to predict decomposition in dry environments has stimulated investigation of non-traditional drivers of decomposition, including photodegradation, the abiotic decomposition of organic matter via exposure to solar radiation. Recent work in this developing field shows that photodegradation may substantially influence terrestrial C fluxes, including abiotic production of carbon dioxide, carbon monoxide and methane, especially in arid and semi-arid regions. Research has also produced contradictory results regarding controls on photodegradation. Here we summarize the state of knowledge about the role of photodegradation in litter decomposition and C cycling and investigate drivers of photodegradation across experiments using a meta-analysis. Overall, increasing litter exposure to solar radiation increased mass loss by 23% with large variation in photodegradation rates among and within ecosystems. This variation was tied to both litter and environmental characteristics. Photodegradation increased with litter C to nitrogen (N) ratio, but not with lignin content, suggesting that we do not yet fully understand the underlying mechanisms. Photodegradation also increased with factors that increased solar radiation exposure (latitude and litter area to mass ratio) and decreased with mean annual precipitation. The impact of photodegradation on C (and potentially N) cycling fundamentally reshapes our thinking of decomposition as a solely biological process and requires that we define the mechanisms driving photodegradation before we can accurately represent photodegradation in global C and N models. © 2012 US Government

    PpiA, a Surface PPIase of the Cyclophilin Family in Lactococcus lactis

    Get PDF
    Background: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displaye

    2- and 3-dimensional synthetic large-scale de novo patterning by mammalian cells through phase separation

    Get PDF
    Synthetic biology provides an opportunity for the construction and exploration of alternative solutions to biological problems - solutions different from those chosen by natural life. To this end, synthetic biologists have built new sensory systems, cellular memories, and alternative genetic codes. There is a growing interest in applying synthetic approaches to multicellular systems, especially in relation to multicellular self-organization. Here we describe a synthetic biological system that confers large-scale de novo patterning activity on 2-D and 3-D populations of mammalian cells. Instead of using the reaction-diffusion mechanisms common in real embryos, our system uses cadherin-mediated phase separation, inspired by the known phenomenon of cadherin-based sorting. An engineered self-organizing, large-scale patterning system requiring no prior spatial cue may be a significant step towards the construction of self-assembling synthetic tissues
    corecore