481 research outputs found

    Interpretation of Electron Micrographs

    Get PDF
    Courses in electron microscopical techniques should include training in the active reading of electron micrographs. The student should be made aware of the fact that every micrograph contains a wealth of information, evident and hidden, and that a careful inspection is required to retrieve the information. More time should normally be spent in scrutinizing the micrograph than in its manufacture. Active reading of the micrograph is aided by a curiosity in the functional significance of the various details of the picture; there has to be a dialogue between the mind and the eye concerning the structural elements and their significance. The investigator also has to be critical with respect to the possibility of technical flaws and should further be on guard against seeing such patterns that others may have seen and have described but which actually do not exist in the micrograph. Among examples given for an analysis in this paper are flaws in the metal shadowing technique and in ultrathin sections that have undergone deformation

    Electric control of collective atomic coherence in an Erbium doped solid

    Full text link
    We demonstrate fast and accurate control of the evolution of collective atomic coherences in an Erbium doped solid using external electric fields. This is achieved by controlling the inhomogeneous broadening of Erbium ions emitting at 1536 nm using an electric field gradient and the linear Stark effect. The manipulation of atomic coherence is characterized with the collective spontaneous emission (optical free induction decay) emitted by the sample after an optical excitation, which does not require any previous preparation of the atoms. We show that controlled dephasing and rephasing of the atoms by the electric field result in collapses and revivals of the optical free induction decay. Our results show that the use of external electric fields does not introduce any substantial additional decoherence and enables the manipulation of collective atomic coherence with a very high degree of precision on the time scale of tens of ns. This provides an interesting resource for photonic quantum state storage and quantum state manipulation.Comment: 10 pages, 5 figure

    An untapped potential for imaging of peripheral osteomyelitis in paediatrics using [ <sup>18</sup> F]FDG PET/CT —the inference from a juvenile porcine model

    Get PDF
    Abstract Purpose To examine parameters affecting the detection of osteomyelitis (OM) by [18F]FDG PET/CT and to reduce tracer activity in a pig model. Background [18F]FDG PET/CT is recommended for the diagnosis of OM in the axial skeleton of adults. In children, OM has a tendency to become chronic or recurrent, especially in low-income countries. Early diagnosis and initiation of therapy are therefore essential. We have previously demonstrated that [18F]FDG PET/CT is promising in juvenile Staphylococcus aureus (S. aureus) OM of peripheral bones in a pig model, not failing even small lesions. When using imaging in children, radiation exposure should be balanced against fast diagnostics in the individual case. Methods Twenty juvenile pigs were inoculated with S. aureus. One week after inoculation, the pigs were [18F]FDG PET/CT scanned. PET list-mode acquired data of a subgroup were retrospectively processed in order to simulate and examine the image quality obtainable with an injected activity of 132 MBq, 44 MBq, 13.2 MBq, and 4.4 MBq, respectively. Results All lesions were detected by [18F]FDG PET and CT. Some lesions were very small (0.01 cm3), and others were larger (4.18 cm3). SUVmax was higher when sequesters (p = 0.023) and fistulas were formed (p < 0.0001). The simulated data demonstrated that it was possible to reduce the activity to 4.4 MBq without compromising image quality in pigs. Conclusions [18F]FDG PET/CT localized even small OM lesions in peripheral bones. It was possible to reduce the injected activity considerably without compromising image quality, impacting the applicability of PET/CT in peripheral OM in children

    Heralded quantum entanglement between two crystals

    Full text link
    Quantum networks require the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater which allows overcoming the distance barrier of direct transmission of single photons, provided remote quantum memories can be entangled in a heralded fashion. Here we report the observation of heralded entanglement between two ensembles of rare-earth-ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of rare-earth-ions doped crystals for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.Comment: 10 pages, 5 figure

    Towards an eficient atomic frequency comb quantum memory

    Full text link
    We present an efficient photon-echo experiment based on atomic frequency combs [Phys. Rev. A 79, 052329 (2009)]. Echoes containing an energy of up to 35% of that of the input pulse are observed in a Pr3+-doped Y2SiO5 crystal. This material allows for the precise spectral holeburning needed to make a sharp and highly absorbing comb structure. We compare our results with a simple theoretical model with satisfactory agreement. Our results show that atomic frequency combs has the potential for high-efficiency storage of single photons as required in future long-distance communication based on quantum repeaters.Comment: 10 pages, 5 figure

    Device-independent quantum key distribution secure against collective attacks

    Full text link
    Device-independent quantum key distribution (DIQKD) represents a relaxation of the security assumptions made in usual quantum key distribution (QKD). As in usual QKD, the security of DIQKD follows from the laws of quantum physics, but contrary to usual QKD, it does not rely on any assumptions about the internal working of the quantum devices used in the protocol. We present here in detail the security proof for a DIQKD protocol introduced in [Phys. Rev. Lett. 98, 230501 (2008)]. This proof exploits the full structure of quantum theory (as opposed to other proofs that exploit the no-signalling principle only), but only holds again collective attacks, where the eavesdropper is assumed to act on the quantum systems of the honest parties independently and identically at each round of the protocol (although she can act coherently on her systems at any time). The security of any DIQKD protocol necessarily relies on the violation of a Bell inequality. We discuss the issue of loopholes in Bell experiments in this context.Comment: 25 pages, 3 figure

    Towards high-speed optical quantum memories

    Full text link
    Quantum memories, capable of controllably storing and releasing a photon, are a crucial component for quantum computers and quantum communications. So far, quantum memories have operated with bandwidths that limit data rates to MHz. Here we report the coherent storage and retrieval of sub-nanosecond low intensity light pulses with spectral bandwidths exceeding 1 GHz in cesium vapor. The novel memory interaction takes place via a far off-resonant two-photon transition in which the memory bandwidth is dynamically generated by a strong control field. This allows for an increase in data rates by a factor of almost 1000 compared to existing quantum memories. The memory works with a total efficiency of 15% and its coherence is demonstrated by directly interfering the stored and retrieved pulses. Coherence times in hot atomic vapors are on the order of microsecond - the expected storage time limit for this memory.Comment: 13 pages, 5 figure

    Generic flow profiles induced by a beating cilium

    Full text link
    We describe a multipole expansion for the low Reynolds number fluid flows generated by a localized source embedded in a plane with a no-slip boundary condition. It contains 3 independent terms that fall quadratically with the distance and 6 terms that fall with the third power. Within this framework we discuss the flows induced by a beating cilium described in different ways: a small particle circling on an elliptical trajectory, a thin rod and a general ciliary beating pattern. We identify the flow modes present based on the symmetry properties of the ciliary beat.Comment: 12 pages, 6 figures, to appear in EPJ
    corecore